Dead-reckoning elucidates fine-scale habitat use by European badgers Meles meles

E. A. Magowan, I. E. Maguire, S. Smith, S. Redpath, N. J. Marks*, R. P. Wilson, F. Menzies, M. O'Hagan, D.M. Scantlebury*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
57 Downloads (Pure)

Abstract

Background
Recent developments in both hardware and software of animal-borne data loggers now enable large amounts of data to be collected on both animal movement and behaviour. In particular, the combined use of tri-axial accelerometers, tri-axial magnetometers and GPS loggers enables animal tracks to be elucidated using a procedure of ‘dead-reckoning’. Although this approach was first suggested 30 years ago by Wilson et al. (1991), surprisingly few measurements have been made in free-ranging terrestrial animals. The current study examines movements, interactions with habitat features, and home-ranges calculated from just GPS data and also from dead-reckoned data in a model terrestrial mammal, the European badger (Meles meles).

Methods
Research was undertaken in farmland in Northern Ireland. Two badgers (one male, one female) were live-trapped and fitted with a GPS logger, a tri-axial accelerometer, and a tri-axial magnetometer. Thereafter, the badgers’ movement paths over 2 weeks were elucidated using just GPS data and GPS-enabled dead-reckoned data, respectively.

Results
Badgers travelled further using data from dead-reckoned calculations than using the data from only GPS data. Whilst once-hourly GPS data could only be represented by straight-line movements between sequential points, the sub-second resolution dead-reckoned tracks were more tortuous. Although there were no differences in Minimum Convex Polygon determinations between GPS- and dead-reckoned data, Kernel Utilisation Distribution determinations of home-range size were larger using the former method. This was because dead-reckoned data more accurately described the particular parts of landscape constituting most-visited core areas, effectively narrowing the calculation of habitat use. Finally, the dead-reckoned data showed badgers spent more time near to field margins and hedges than simple GPS data would suggest.

Conclusion
Significant differences emerge when analyses of habitat use and movements are compared between calculations made using just GPS data or GPS-enabled dead-reckoned data. In particular, use of dead-reckoned data showed that animals moved 2.2 times farther, had better-defined use of the habitat (revealing clear core areas), and made more use of certain habitats (field margins, hedges). Use of dead-reckoning to provide detailed accounts of animal movement and highlight the minutiae of interactions with the environment should be considered an important technique in the ecologist’s toolkit.

Original languageEnglish
Article number10
Number of pages11
JournalAnimal Biotelemetry
Volume10
DOIs
Publication statusPublished - 10 Mar 2022

Fingerprint

Dive into the research topics of 'Dead-reckoning elucidates fine-scale habitat use by European badgers Meles meles'. Together they form a unique fingerprint.

Cite this