TY - JOUR
T1 - Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes
AU - Betzler, Bjorn Kaijun
AU - Chee, Evelyn Yi Lyn
AU - He, Feng
AU - Lim, Cynthia Ciwei
AU - Ho, Jinyi
AU - Hamzah, Haslina
AU - Tan, Ngiap Chuan
AU - Liew, Gerald
AU - McKay, Gareth J
AU - Hogg, Ruth E
AU - Young, Ian S
AU - Cheng, Ching-Yu
AU - Lim, Su Chi
AU - Lee, Aaron Y
AU - Wong, Tien Yin
AU - Lee, Mong Li
AU - Hsu, Wynne
AU - Tan, Gavin Siew Wei
AU - Sabanayagam, Charumathi
N1 - © The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association.
PY - 2023/9/2
Y1 - 2023/9/2
N2 - OBJECTIVE: To develop a deep learning algorithm (DLA) to detect diabetic kideny disease (DKD) from retinal photographs of patients with diabetes, and evaluate performance in multiethnic populations.MATERIALS AND METHODS: We trained 3 models: (1) image-only; (2) risk factor (RF)-only multivariable logistic regression (LR) model adjusted for age, sex, ethnicity, diabetes duration, HbA1c, systolic blood pressure; (3) hybrid multivariable LR model combining RF data and standardized z-scores from image-only model. Data from Singapore Integrated Diabetic Retinopathy Program (SiDRP) were used to develop (6066 participants with diabetes, primary-care-based) and internally validate (5-fold cross-validation) the models. External testing on 2 independent datasets: (1) Singapore Epidemiology of Eye Diseases (SEED) study (1885 participants with diabetes, population-based); (2) Singapore Macroangiopathy and Microvascular Reactivity in Type 2 Diabetes (SMART2D) (439 participants with diabetes, cross-sectional) in Singapore. Supplementary external testing on 2 Caucasian cohorts: (3) Australian Eye and Heart Study (AHES) (460 participants with diabetes, cross-sectional) and (4) Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA) (265 participants with diabetes, cross-sectional).RESULTS: In SiDRP validation, area under the curve (AUC) was 0.826(95% CI 0.818-0.833) for image-only, 0.847(0.840-0.854) for RF-only, and 0.866(0.859-0.872) for hybrid. Estimates with SEED were 0.764(0.743-0.785) for image-only, 0.802(0.783-0.822) for RF-only, and 0.828(0.810-0.846) for hybrid. In SMART2D, AUC was 0.726(0.686-0.765) for image-only, 0.701(0.660-0.741) in RF-only, 0.761(0.724-0.797) for hybrid.DISCUSSION AND CONCLUSION: There is potential for DLA using retinal images as a screening adjunct for DKD among individuals with diabetes. This can value-add to existing DLA systems which diagnose diabetic retinopathy from retinal images, facilitating primary screening for DKD.
AB - OBJECTIVE: To develop a deep learning algorithm (DLA) to detect diabetic kideny disease (DKD) from retinal photographs of patients with diabetes, and evaluate performance in multiethnic populations.MATERIALS AND METHODS: We trained 3 models: (1) image-only; (2) risk factor (RF)-only multivariable logistic regression (LR) model adjusted for age, sex, ethnicity, diabetes duration, HbA1c, systolic blood pressure; (3) hybrid multivariable LR model combining RF data and standardized z-scores from image-only model. Data from Singapore Integrated Diabetic Retinopathy Program (SiDRP) were used to develop (6066 participants with diabetes, primary-care-based) and internally validate (5-fold cross-validation) the models. External testing on 2 independent datasets: (1) Singapore Epidemiology of Eye Diseases (SEED) study (1885 participants with diabetes, population-based); (2) Singapore Macroangiopathy and Microvascular Reactivity in Type 2 Diabetes (SMART2D) (439 participants with diabetes, cross-sectional) in Singapore. Supplementary external testing on 2 Caucasian cohorts: (3) Australian Eye and Heart Study (AHES) (460 participants with diabetes, cross-sectional) and (4) Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA) (265 participants with diabetes, cross-sectional).RESULTS: In SiDRP validation, area under the curve (AUC) was 0.826(95% CI 0.818-0.833) for image-only, 0.847(0.840-0.854) for RF-only, and 0.866(0.859-0.872) for hybrid. Estimates with SEED were 0.764(0.743-0.785) for image-only, 0.802(0.783-0.822) for RF-only, and 0.828(0.810-0.846) for hybrid. In SMART2D, AUC was 0.726(0.686-0.765) for image-only, 0.701(0.660-0.741) in RF-only, 0.761(0.724-0.797) for hybrid.DISCUSSION AND CONCLUSION: There is potential for DLA using retinal images as a screening adjunct for DKD among individuals with diabetes. This can value-add to existing DLA systems which diagnose diabetic retinopathy from retinal images, facilitating primary screening for DKD.
U2 - 10.1093/jamia/ocad179
DO - 10.1093/jamia/ocad179
M3 - Article
C2 - 37659103
SN - 1067-5027
JO - Journal of the American Medical Informatics Association
JF - Journal of the American Medical Informatics Association
ER -