Dense subgraphs on dynamic networks

A. Das Sarma, A. Lall, D. Nanongkai, A. Trehan

Research output: Chapter in Book/Report/Conference proceedingChapter

17 Citations (Scopus)

Abstract

In distributed networks, it is often useful for the nodes to be aware of dense subgraphs, e.g., such a dense subgraph could reveal dense substructures in otherwise sparse graphs (e.g. the World Wide Web or social networks); these might reveal community clusters or dense regions for possibly maintaining good communication infrastructure. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs that the member nodes are aware of. The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model. Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that (2 + e)-approximate the densest subgraph and (3 + e)-approximate the at-least-k-densest subgraph (for a given parameter k). Our algorithms work for a wide range of parameter values and run in O(D log n) time. Further, a special case of our results also gives the first fully decentralized approximation algorithms for densest and at-least-k-densest subgraph problems for static distributed graphs.
Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Subtitle of host publicationDistributed Computing. 26th International Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Proceedings
EditorsMarcos K Aguilera
PublisherSpringer
Pages151-165
Number of pages15
Volume7611 LNCS
ISBN (Electronic)978-3-642-33651-5
ISBN (Print)9783642336508
DOIs
Publication statusPublished - 01 Jan 2012
Event26th International Symposium, DISC 2012. - Salvador, Brazil
Duration: 16 Oct 201318 Nov 2013

Publication series

NameLecture Notes in Computer Science
Volume7611

Conference

Conference26th International Symposium, DISC 2012.
Country/TerritoryBrazil
CitySalvador
Period16/10/201318/11/2013

Keywords

  • Distributed algorithm
  • Dynamic networks
  • Graph density
  • at-least-k dense subgraphs
  • Estimation

ASJC Scopus subject areas

  • General Computer Science

Fingerprint

Dive into the research topics of 'Dense subgraphs on dynamic networks'. Together they form a unique fingerprint.

Cite this