TY - JOUR
T1 - Design and synthesis of N-doped carbons as efficient metal-free catalysts in the hydrogenation of 1-chloro-4-nitrobenzene
AU - Villora-Picó, Juan-José
AU - Sepúlveda-Escribano, Antonio
AU - Pastor-Blas, María-Mercedes
PY - 2024/2/21
Y1 - 2024/2/21
N2 - Metal-free catalysts based on nitrogen-doped porous carbons were designed and synthesized from mixtures of melamine as nitrogen and carbon sources and calcium citrate as carbon source and porogen system. Considering the physicochemical and textural properties of the prepared carbons, a melamine/citrate ratio of 2:1 was selected to study the effect of the pyrolysis temperature. It was observed that a minimum pyrolysis temperature of 750 °C is required to obtain a carbonaceous structure. However, although there is a decrease in the nitrogen amount at higher pyrolysis temperatures, a gradual development of the porosity is produced from 750 °C to 850 °C. Above that temperature, a deterioration of the carbon porous structure is produced. All the prepared carbon materials, with no need for a further activation treatment, were active in the hydrogenation reaction of 1-chloro-4-nitrobenzene. A full degree of conversion was reached with the most active catalysts obtained from 2:1 melamine/citrate mixtures pyrolyzed at 850 °C and 900 °C, which exhibited a suitable compromise between the N-doping level and developed mesoporosity that facilitates the access of the reactants to the catalytic sites. What is more, all the materials showed 100% selectivity for the hydrogenation of the nitro group to form the corresponding chloro-aniline.
AB - Metal-free catalysts based on nitrogen-doped porous carbons were designed and synthesized from mixtures of melamine as nitrogen and carbon sources and calcium citrate as carbon source and porogen system. Considering the physicochemical and textural properties of the prepared carbons, a melamine/citrate ratio of 2:1 was selected to study the effect of the pyrolysis temperature. It was observed that a minimum pyrolysis temperature of 750 °C is required to obtain a carbonaceous structure. However, although there is a decrease in the nitrogen amount at higher pyrolysis temperatures, a gradual development of the porosity is produced from 750 °C to 850 °C. Above that temperature, a deterioration of the carbon porous structure is produced. All the prepared carbon materials, with no need for a further activation treatment, were active in the hydrogenation reaction of 1-chloro-4-nitrobenzene. A full degree of conversion was reached with the most active catalysts obtained from 2:1 melamine/citrate mixtures pyrolyzed at 850 °C and 900 °C, which exhibited a suitable compromise between the N-doping level and developed mesoporosity that facilitates the access of the reactants to the catalytic sites. What is more, all the materials showed 100% selectivity for the hydrogenation of the nitro group to form the corresponding chloro-aniline.
U2 - 10.3390/ijms25052515
DO - 10.3390/ijms25052515
M3 - Article
SN - 1661-6596
VL - 25
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 5
M1 - 2515
ER -