Design Method for Circularly Polarized Fabry-Perot Cavity Antennas

Robert Orr*, George Goussetis, Vincent Fusco

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

89 Citations (Scopus)
1510 Downloads (Pure)


A new class of circularly polarized (CP) Fabry-Perot cavity antennas is introduced that maintain the simplicity of a linearly polarized primary feed and a single cavity structure. The proposed antennas employ a double-sided partially reflective surface (PRS), which allows independent control of the magnitude and phase responses for the reflection and transmission coefficients. In conjunction with an anisotropic high-impedance surface (HIS) ground plane, this arrangement allows for the first time a single cavity antenna to produce a specified gain in CP from a linearly polarized primary source. A design procedure for this class of antennas is introduced. The method exploits a simple ray optics model to calculate the magnitude and phase of the electric field in the cavity upon plane wave excitation. Based on this model, analytical expressions are derived, which enforce the resonance condition for both polarizations at a predetermined PRS reflectivity (and hence predetermined antenna gain) together with a 90 degrees differential phase between them. The validity of the concept is confirmed by means of an example entailing an antenna with gain of approximately 21 dB at 15 GHz. Full-wave simulation results and experimental testing on a fabricated prototype are presented and agree well with the theoretical predictions.

Original languageEnglish
Article number6644269
Pages (from-to)19-26
Number of pages8
JournalIEEE Transactions on Antennas and Propagation
Issue number1
Publication statusPublished - Jan 2014


  • Directive antenna
  • high-impedance surface
  • partially reflective surface
  • resonant cavity antenna
  • BAND

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Condensed Matter Physics


Dive into the research topics of 'Design Method for Circularly Polarized Fabry-Perot Cavity Antennas'. Together they form a unique fingerprint.

Cite this