Developmental transcriptomic analyses for mechanistic insights into critical pathways involved in embryogenesis of pelagic mahi-mahi (Coryphaena hippurus)

Elvis Genbo Xu*, Edward M. Mager, Martin Grosell, John D. Stieglitz, E. Starr Hazard, Gary Hardiman, Daniel Schlenk

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)
127 Downloads (Pure)

Abstract

Mahi-mahi (Coryphaena hippurus) is a commercially and ecologically important species of fish occurring in tropical and temperate waters worldwide. Understanding early life events is crucial for predicting effects of environmental stress, which is largely restricted by a lack of genetic resources regarding expression of early developmental genes and regulation of pathways. The need for anchoring developmental stages to transcriptional activities is highlighted by increasing evidence on the impacts of recurrent worldwide oil spills in this sensitive species during early development. By means of high throughput sequencing, we characterized the developmental transcriptome of mahi-mahi at three critical developmental stages, from pharyngula embryonic stage (24 hpf) to 48 hpf yolk-sac larva (transition 1), and to 96 hpf free-swimming larva (transition 2). With comparative analysis by multiple bioinfor-matic tools, a larger number of significantly altered genes and more diverse gene ontology terms were observed during transition 2 than transition 1. Cellular and tissue development terms were more significantly enriched in transition 1, while metabolism related terms were more enriched in transition 2, indicating a switch progressing from general embryonic development to metabolism during the two transitions. Special focus was given on the most significant common canonical pathways (e.g. calcium signaling, glutamate receptor signaling, cAMP response element-binding protein signaling, cardiac β-adrenergic signaling, etc.) and expression of developmental genes (e.g. collagens, myosin, notch, glutamate metabotropic receptor etc.), which were associated with morphological changes of nervous, muscular, and cardiovascular system. These data will provide an important basis for understanding embryonic development and identifying molecular mechanisms of abnormal development in fish species.

Original languageEnglish
Article numbere0180454
Number of pages19
JournalPLoS ONE
Volume12
Issue number7
DOIs
Publication statusPublished - 01 Jul 2017

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Developmental transcriptomic analyses for mechanistic insights into critical pathways involved in embryogenesis of pelagic mahi-mahi (Coryphaena hippurus)'. Together they form a unique fingerprint.

Cite this