Diagnostic performance on briefly presented digital pathology images

Joseph P. Houghton, Bruce R. Smoller, Niamh Leonard, Michael R. Stevenson, Tim Dornan

Research output: Contribution to journalArticlepeer-review


Background: Identifying new and more robust assessments of proficiency/expertise (finding new "biomarkers of expertise") in histopathology is desirable for many reasons. Advances in digital pathology permit new and innovative tests such as flash viewing tests and eye tracking and slide navigation analyses that would not be possible with a traditional microscope. The main purpose of this study was to examine the usefulness of time-restricted testing of expertise in histopathology using digital images.
Methods: 19 novices (undergraduate medical students), 18 intermediates (trainees), and 19 experts (consultants) were invited to give their opinion on 20 general histopathology cases after 1 s and 10 s viewing times. Differences in performance between groups were measured and the internal reliability of the test was calculated.
Results: There were highly significant differences in performance between the groups using the Fisher's least significant difference method for multiple comparisons. Differences between groups were consistently greater in the 10-s than the 1-s test. The Kuder-Richardson 20 internal reliability coefficients were very high for both tests: 0.905 for the 1-s test and 0.926 for the 10-s test. Consultants had levels of diagnostic accuracy of 72% at 1 s and 83% at 10 s.
Conclusions: Time-restricted tests using digital images have the potential to be extremely reliable tests of diagnostic proficiency in histopathology. A 10-s viewing test may be more reliable than a 1-s test. Over-reliance on "at a glance" diagnoses in histopathology is a potential source of medical error due to over-confidence bias and premature closure.
Original languageEnglish
Number of pages6
JournalJournal of Pathology Informatics
Issue number1
Publication statusPublished - Oct 2015


Dive into the research topics of 'Diagnostic performance on briefly presented digital pathology images'. Together they form a unique fingerprint.

Cite this