Projects per year
Abstract
Germanium is an indirect semiconductor which attracts a particular interest as an electronics and photonics material due to low indirect to direct band separation. In this work we bend the bands of Ge by means of biaxial tensile strain in order to achieve a direct bandgap. Strain is applied by growth of Ge on a lattice mismatched InGaAs buffer layer with variable In content. Band structure is studied by photoluminescence and photoreflectance, giving the indirect and direct bands of the material. Obtained experimental energy band values are compared with a kp simulation. Photoreflectance spectra are also simulated and compared with the experiment. The obtained results indicate direct band structure obtained for a Ge sample with 1.94 % strain applied, with preferable -valley to heavy hole transition.
Original language | English |
---|---|
Article number | 195304 |
Number of pages | 12 |
Journal | Physical Review B |
Volume | 97 |
Issue number | 19 |
Early online date | 09 May 2018 |
DOIs | |
Publication status | Published - 2018 |
Fingerprint
Dive into the research topics of 'Direct and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studies'. Together they form a unique fingerprint.Projects
- 1 Finished
-
R3729TSL: Si-Compatible Strain Engineered Staggered Gap Ge(Sn)/InGa As Non-Scale Tunnel Field Effect Transistors
Grüning, M. (PI) & Kohanoff, J. (CoI)
25/09/2015 → 31/03/2019
Project: Research