Direct Detection of YORP Spin-up on Asteroid (25143) Itokawa and Implications for its Internal Structure

Stephen Lowry, P. R. Weissman, S. R. Duddy, B. Rozitis, A. Fitzsimmons, S. F. Green, M. D. Hicks, C. Snodgrass, S. D. Wolters, S. R. Chesley, J. Pittichová, P. van Oers

Research output: Contribution to journalMeeting abstractpeer-review

Abstract

Near-Earth asteroid (25143) Itokawa was visited by the Hayabusa spacecraft in 2005, resulting in a highly detailed surface shape and topography model. This model has led to several predictions for the expected radiative torques on this asteroid, suggesting that its spin rate should be decelerating. Through an observational survey spanning 2001 to 2013 we have successfully measured an acceleration in its spin rate of dω/dt = 3.54 (± 0.38) × 10^(-8) rad day^(-2), equivalent to a decrease of its rotation period of ~ 45 ms year^(-1). Using the shape model determined from the Hayabusa spacecraft, we applied a detailed thermophysical analysis, to reconcile the predicted YORP strength with that observed. We find that the center-of-mass for Itokawa must be shifted by ~20 m along the long-axis of the asteroid to reconcile observations with theory. This can be explained if Itokawa is composed of two separate bodies with very different bulk densities of 1740 ± 110 kg m^(-3) and 2730 ± 440 kg m^(-3), and was formed from the merger of two separate bodies, consistent with the collapse of a binary system or the re-accumulation of material from a catastrophic collisional disruption. We demonstrate that an observational measurement of radiative torques, when combined with a detailed shape model, can provide insight into the interior structure of an asteroid.
Original languageEnglish
JournalBulletin of the American Astronomical Society
Volume45
Issue number5
Publication statusPublished - 01 Oct 2013

Fingerprint

Dive into the research topics of 'Direct Detection of YORP Spin-up on Asteroid (25143) Itokawa and Implications for its Internal Structure'. Together they form a unique fingerprint.

Cite this