Discotic Organic Gelators in Ion Sensing, Metallogel Formation, and Bioinspired Catalysis

Novina Malviya, Chanchal Sonkar, Bidyut Kumar Kundu, Suman Mukhopadhyay

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

Two organogelators G2 and G3 with a carboxamide group have been synthesized and characterized with different spectroscopic tools. Dimethylformamide or dimethyl sulfoxide solutions of both the compounds upon the addition of a minute quantity of water show the tendency to form gels. Supramolecular self-assembly for gel formation paves the way for aggregation-induced emission enhancement (AIEE) phenomena for both the gelator molecules. Introduction of metal ions in organogels strengthens the gel property without much affecting the fluorescence behavior. However, the introduction of Ag+, Fe2+, and Fe3+ ions in the G2 organogel separately results in total quenching of AIEE, making it possible to sense that particular cation in the gel state. The G3 organogel shows a similar behavior with the Fe2+ ion. Remarkably, other metallogels such as Ni(II)G2 and Co(II)G2 can sense sulfide ion and Cu(II)G2 can sense iodide ion by switching off the fluorescence even in multianalyte conditions. Furthermore, the copper-based metallogel Cu(II)G2 can be utilized as a catalyst and reaction medium for aerobic oxidation of catechol to quinone. To the best of our knowledge, this is the first attempt known so far to utilize a metallogel material for bioinspired catalysis such as catechol oxidation.
Original languageEnglish
Pages (from-to)11575-11585
Number of pages11
JournalLangmuir
Volume34
Issue number38
Early online date31 Aug 2018
DOIs
Publication statusPublished - 25 Sep 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Discotic Organic Gelators in Ion Sensing, Metallogel Formation, and Bioinspired Catalysis'. Together they form a unique fingerprint.

Cite this