Discovery of an au-scale Excess in Millimeter Emission from the Protoplanetary Disk around TW Hya

Takashi Tsukagoshi, Takayuki Muto, Hideko Nomura, Ryohei Kawabe, Kazuhiro D. Kanagawa, Satoshi Okuzumi, Shigeru Ida, Catherine Walsh, Tom J. Millar, Sanemichi Z. Takahashi, Jun Hashimoto, Taichi Uyama, Motohide Tamara

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)
193 Downloads (Pure)

Abstract

We report the detection of an excess in dust continuum emission at 233 GHz (1.3 mm in wavelength) in the protoplanetary disk (PPD) around TW Hya revealed through high-sensitivity observations at ~3 au resolution with the Atacama Large Millimeter/submillimeter Array. The sensitivity of the 233 GHz image has been improved by a factor of 3 with regard to that of our previous cycle 3 observations. The overall structure is mostly axisymmetric, and there are apparent gaps at 25 and 41 au as previously reported. The most remarkable new finding is a few astronomical-unit-scale excess emission in the southwest part of the PPD. The excess emission is located at 52 au from the disk center and is 1.5 times brighter than the surrounding PPD at a significance of 12σ. We performed a visibility fitting to the extracted emission after subtracting the axisymmetric PPD emission and found that the inferred size and the total flux density of the excess emission are 4.4 × 1.0 au and 250 μJy, respectively. The dust mass of the excess emission corresponds to 0.03 M ⊕ if a dust temperature of 18 K is assumed. Because the excess emission can also be marginally identified in the Band 7 image at almost the same position, the feature is unlikely to be a background source. The excess emission can be explained by a dust clump accumulated in a small elongated vortex or a massive circumplanetary disk around a Neptune-mass-forming planet.
Original languageEnglish
Article numberL8
Number of pages6
JournalThe Astrophysical Journal Letters
Volume878
Issue number1
DOIs
Publication statusPublished - 06 Jun 2019

Fingerprint

Dive into the research topics of 'Discovery of an au-scale Excess in Millimeter Emission from the Protoplanetary Disk around TW Hya'. Together they form a unique fingerprint.

Cite this