TY - JOUR
T1 - Dissolving Microneedle Delivery of Nanoparticle Encapsulated Antigen Elicits Efficient Cross-Priming and Th1 Immune Responses by Murine Langerhans Cells
AU - Zaric, Marija
AU - Lyubomska, Oksana
AU - Poux, Candice
AU - Hanna, Mary L.
AU - McCrudden, Maeliosa T
AU - Malissen, Bernard
AU - Ingram, Rebecca J
AU - Power, Ultan
AU - Scott, Christopher J
AU - Donnelly, Ryan F
AU - Kissenpfennig, Adrien
PY - 2015/2
Y1 - 2015/2
N2 - Dendritic cells (DCs) of the skin play an important role in skin-mediated immunity capable of promoting potent immune responses. We availed of polymeric dissolving microneedle (MN) arrays laden with nano-encapsulated antigen to specifically target skin DC networks. This modality of immunization represents an economic, efficient and potent means of antigen delivery directly to skin DCs, which are inefficiently targeted by more conventional immunization routes. Following MN immunization, Langerhans cells (LCs) constituted the major skin DC subset capable of cross-priming antigen-specific CD8(+) T cells ex-vivo. While all DC subsets were equally efficient in priming CD4(+) T cells, LCs were largely responsible for orchestrating the differentiation of CD4(+) IFN-γ and IL-17 producing effectors. Importantly, depletion of LCs prior to immunization had a profound effect on CD8(+) CTL responses in vivo, and vaccinated animals displayed reduced protective anti-tumour and viral immunity. Interestingly, this cross-priming bias was lost following MN immunization with soluble antigen, suggesting that processing and cross-presentation of nano-particulate antigen is favoured by LCs. Therefore, these studies highlight the importance of LCs in skin immunization strategies and that targeting of nano-particulate immunogens through dissolvable polymeric MNs potentially provides a promising technological platform for improved vaccination strategies.Journal of Investigative Dermatology accepted article preview online, 22 September 2014. doi:10.1038/jid.2014.415.
AB - Dendritic cells (DCs) of the skin play an important role in skin-mediated immunity capable of promoting potent immune responses. We availed of polymeric dissolving microneedle (MN) arrays laden with nano-encapsulated antigen to specifically target skin DC networks. This modality of immunization represents an economic, efficient and potent means of antigen delivery directly to skin DCs, which are inefficiently targeted by more conventional immunization routes. Following MN immunization, Langerhans cells (LCs) constituted the major skin DC subset capable of cross-priming antigen-specific CD8(+) T cells ex-vivo. While all DC subsets were equally efficient in priming CD4(+) T cells, LCs were largely responsible for orchestrating the differentiation of CD4(+) IFN-γ and IL-17 producing effectors. Importantly, depletion of LCs prior to immunization had a profound effect on CD8(+) CTL responses in vivo, and vaccinated animals displayed reduced protective anti-tumour and viral immunity. Interestingly, this cross-priming bias was lost following MN immunization with soluble antigen, suggesting that processing and cross-presentation of nano-particulate antigen is favoured by LCs. Therefore, these studies highlight the importance of LCs in skin immunization strategies and that targeting of nano-particulate immunogens through dissolvable polymeric MNs potentially provides a promising technological platform for improved vaccination strategies.Journal of Investigative Dermatology accepted article preview online, 22 September 2014. doi:10.1038/jid.2014.415.
U2 - 10.1038/jid.2014.415
DO - 10.1038/jid.2014.415
M3 - Article
C2 - 25243789
SN - 0022-202X
VL - 135
SP - 425
EP - 434
JO - Journal of investigative dermatology
JF - Journal of investigative dermatology
ER -