TY - JOUR
T1 - DNA vaccination for cervical cancer: Strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system.
AU - Cole, Grace
AU - Ali, Ahlam
AU - McCrudden, Cian
AU - McBride, John
AU - McCaffrey, Joanne
AU - Robson, Tracy
AU - Kett, Victoria
AU - Dunne, Nicholas
AU - Donnelly, Ryan
AU - McCarthy, Helen
PY - 2018/3/3
Y1 - 2018/3/3
N2 - Dissolvable microneedles can be employed to deliver DNA to antigen presenting cells within the skin. However, this technology faces two main challenges: the poor transfection efficacy of pDNA following release from the microneedle matrix, and the limited loading capacity of the micron-scale devices. Two-tier delivery systems combining microneedle platforms and DNA delivery vectors have increased efficacy but the challenge of increasing the loading capacity remains. This study utilised lyophilisation to increase the loading of RALA/pDNA nanoparticles within dissolvable PVA microneedles. As a result, delivery was significantly enhanced in vivo into an appropriate range for DNA vaccination (∼50 μg per array). Furthermore, modifying the manufacturing process was not detrimental to the microneedle mechanical properties or cargo functionality. It was demonstrated that arrays retained mechanical and functional stability over short term storage, and were able to elicit gene expression in vitro and in vivo. Finally, treatment with this novel formulation significantly retarded the growth of established tumours, and proved superior to standard intramuscular injection in a preclinical model of cervical cancer.
AB - Dissolvable microneedles can be employed to deliver DNA to antigen presenting cells within the skin. However, this technology faces two main challenges: the poor transfection efficacy of pDNA following release from the microneedle matrix, and the limited loading capacity of the micron-scale devices. Two-tier delivery systems combining microneedle platforms and DNA delivery vectors have increased efficacy but the challenge of increasing the loading capacity remains. This study utilised lyophilisation to increase the loading of RALA/pDNA nanoparticles within dissolvable PVA microneedles. As a result, delivery was significantly enhanced in vivo into an appropriate range for DNA vaccination (∼50 μg per array). Furthermore, modifying the manufacturing process was not detrimental to the microneedle mechanical properties or cargo functionality. It was demonstrated that arrays retained mechanical and functional stability over short term storage, and were able to elicit gene expression in vitro and in vivo. Finally, treatment with this novel formulation significantly retarded the growth of established tumours, and proved superior to standard intramuscular injection in a preclinical model of cervical cancer.
U2 - 10.1016/j.ejpb.2018.02.029
DO - 10.1016/j.ejpb.2018.02.029
M3 - Article
SN - 0939-6411
VL - 127
SP - 288
EP - 297
JO - European Journal of Pharmaceutics and Biopharmaceutics
JF - European Journal of Pharmaceutics and Biopharmaceutics
ER -