Domain wall saddle point morphology in ferroelectric triglycine sulfate

C. J. McCluskey*, A. Kumar, A. Gruverman, I. Luk'yanchuk, J. M. Gregg*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

100 Downloads (Pure)


Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of interlocking bifurcated domains. Conducting atomic force microscopy, performed close to the saddle points, showed no evidence for highly localized conducting domain wall sections, across which a divergence in polarization might be implied; this supports the notion that localized dipolar rotation occurs to minimize any potential polar discontinuity. Overall, our study, therefore, confirms that mutual domain bifurcation and suspected local dipolar rotation are not unique to lead germanate and instead may be widely present in other uniaxial ferroelectrics.
Original languageEnglish
Article number222902
JournalApplied Physics Letters
Issue number22
Publication statusPublished - 29 May 2023


Dive into the research topics of 'Domain wall saddle point morphology in ferroelectric triglycine sulfate'. Together they form a unique fingerprint.

Cite this