Drivers’ evaluation of different automated driving styles: is it both comfortable and natural?

Chen Peng, Natasha Merat, Richard Romano, Foroogh Hajiseyedjavadi, Evangelos Paschalidis, Chongfeng Wei, Vishnu Radhakrishnan, Albert Solernou, Deborah Forster, Erwin Boer

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

This study investigated users' subjective evaluation of three highly automated driving styles, in terms of comfort and naturalness, when negotiating a UK road in a high-fidelity, motion-based, driving simulator. Comfort and naturalness play an important role in contributing to users' acceptance and trust of automated vehicles (AVs), although not much is understood about the types of driving style which are considered comfortable or natural. A driving simulator study, simulating roads with different road geometries and speed limits, was conducted. Twenty-four participants experienced three highly automated driving styles, two of which were recordings from human drivers, and the other was based on a machine learning (ML) algorithm, termed Defensive, Aggressive, and Turner, respectively. Participants evaluated comfort or naturalness of each driving style, for each road segment, and completed a Sensation Seeking questionnaire, which assessed their risk-taking propensity. Participants regarded both human-like driving styles as more comfortable and natural, compared with the less human-like, ML-based, driving controller. Particularly, between the two human-like controllers, the Defensive style was considered more comfortable, especially for the more challenging road environments. Differences in preference for controller by driver trait were also observed, with the Aggressive driving style evaluated as more natural by the high sensation seekers. Participants were able to distinguish between human- and machine-like AV controllers. A range of psychological concepts must be considered for the subjective evaluation of controllers. Insights into how different driver groups evaluate automated vehicle controllers are important in designing more acceptable systems.
Original languageEnglish
Journal Human Factors: The Journal of the Human Factors and Ergonomics Society
Early online date11 Jul 2022
DOIs
Publication statusEarly online date - 11 Jul 2022

Keywords

  • highly automated driving
  • naturalness
  • driving style
  • comfort
  • sensation seeking

Fingerprint

Dive into the research topics of 'Drivers’ evaluation of different automated driving styles: is it both comfortable and natural?'. Together they form a unique fingerprint.

Cite this