Effects of experimental nitrogen fertilization on planktonic metabolism and CO2 flux in a hypereutrophic hardwater lake

Matthew J. Bogard, Kerri Finlay, Marley J. Waiser, Vijay P. Tumber, Derek B. Donald, Emma Wiik, Gavin L. Simpson, Paul A. Del Giorgio, Peter R. Leavitt

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)
198 Downloads (Pure)

Abstract

Hardwater lakes are common in human-dominated regions of the world and often experience pollution due to agricultural and urban effluent inputs of inorganic and organic nitrogen (N). Although these lakes are landscape hotspots for CO2 exchange and food web carbon (C) cycling, the effect of N enrichment on hardwater lake food web functioning and C cycling patterns remains unclear. Specifically, it is unknown if different eutrophication scenarios (e.g., modest non point vs. extreme point sources) yield consistent effects on auto-and heterotrophic C cycling, or how biotic responses interact with the inorganic C system to shape responses of air-water CO2 exchange. To address this uncertainty, we induced large metabolic gradients in the plankton community of a hypereutrophic hardwater Canadian prairie lake by adding N as urea (the most widely applied agricultural fertilizer) at loading rates of 0, 1, 3, 8 or 18 mg N L-1 week-1 to 3240-L, in-situ mesocosms. Over three separate 21-day experiments, all treatments of N dramatically increased phytoplankton biomass and gross primary production (GPP) two-to six-fold, but the effects of N on autotrophs plateaued at ~3 mg N L-1. Conversely, heterotrophic metabolism increased linearly with N fertilization over the full treatment range. In nearly all cases, N enhanced net planktonic uptake of dissolved inorganic carbon (DIC), and increased the rate of CO2 influx, while planktonic heterotrophy and CO2 production only occurred in the highest N treatments late in each experiment, and even in these cases, enclosures continued to in-gas CO2. Chemical effects on CO2 through calcite precipitation were also observed, but similarly did not change the direction of net CO2 flux. Taken together, these results demonstrate that atmospheric exchange of CO2 in eutrophic hardwater lakes remains sensitive to increasing N loading and eutrophication, and that even modest levels of N pollution are capable of enhancing autotrophy and CO2 in-gassing in P-rich lake ecosystems.

Original languageEnglish
Article numbere0188652
Number of pages19
JournalPLoS ONE
Volume12
Issue number12
DOIs
Publication statusPublished - 12 Dec 2017

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'Effects of experimental nitrogen fertilization on planktonic metabolism and CO<sub>2</sub> flux in a hypereutrophic hardwater lake'. Together they form a unique fingerprint.

Cite this