Effects of Impactor Geometry on the Low-Velocity Impact Behaviour of Fibre-Reinforced Composites: An Experimental and Theoretical Investigation

Haibao Liu, Jun Liu, Yuzhe Ding, Jin Zhou, Xiangshao Kong, Bamber Blackman, Anthony J. Kinloch, Brian Falzon, John P. Dear*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
10 Downloads (Pure)

Abstract

Carbon-fibre/epoxy-matrix composites used in aerospace and vehicle applications are often susceptible to critical loading conditions and one example is impact loading. The present paper describes a detailed experimental and numerical investigation on the relatively low-velocity (i.e. <10 m/s) impact behaviour of such composite laminates. In particular, the effects of the geometry of the impactor have been studied and two types of impactor were investigated: (a) a steel impactor with a hemispherical head and (b) a flat-ended steel impactor. They were employed to strike the composite specimens with an impact energy level of 15 J. After the impact experiments, all the composite laminates were inspected using ultrasonic C-scan tests to assess the damage that was induced by the two different types of impactor. A three-dimensional finite-element (FE) model, incorporating a newly developed elastic-plastic damage model which was implemented as a VUMAT subroutine, was employed to simulate the impact event and to investigate the effects of the geometry of the impactor. The numerical predictions, including those for the loading response and the damage maps, gave good agreement with the experimental results.
Original languageEnglish
JournalApplied Composite Materials
DOIs
Publication statusPublished - 17 Jun 2020

Fingerprint Dive into the research topics of 'Effects of Impactor Geometry on the Low-Velocity Impact Behaviour of Fibre-Reinforced Composites: An Experimental and Theoretical Investigation'. Together they form a unique fingerprint.

Cite this