Abstract
Context. Absorption or emission lines of Fe II are observed in many astrophysical spectra and accurate atomic data are required to interpret these lines. The calculation of electron-impact excitation rates for transitions among even the lowest lying levels of Fe II is a formidable task for theoreticians.
Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Fe II for low-lying forbidden transitions among the lowest 16 fine-structure levels arising from the four LS states 3d(6)4s D-6(e), 3d(7) F-4(e), 3d(6)4s D-4(e), and 3d(7) P-4(e). The effective collision strengths are calculated for a wide range of electron temperatures of astrophysical importance from 30-100 000 K.
Methods. The parallel suite of Breit-Pauli codes are utilised to compute the collision cross sections for electron-impact excitation of Fe II and relativistic terms are included explicitly in both the target and the scattering approximation. 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7), and 3d(6)4p were included in the wavefunction representation of the target, including all doublet, quartet, and sextet terms. Collision strengths for a total of 34191 individual transitions were computed.
Results. A detailed comparison is made with previous theoretical works and significant differences were found to occur in the effective collision strengths, particularly at low temperatures.
Original language | English |
---|---|
Pages (from-to) | 765-769 |
Number of pages | 5 |
Journal | Astronomy and Astrophysics |
Volume | 475 |
Issue number | 2 |
DOIs | |
Publication status | Published - Nov 2007 |
Keywords
- atomic data
- atomic processes
- plasmas
- R-MATRIX METHOD
- ATOMIC DATA
- EMISSION-LINES
- IRON-PROJECT
- SPECTRA
- PROGRAM
- STATE