EMG wrist-hand motion recognition system for real-time Embedded platform

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)
306 Downloads (Pure)


Electromyography (EMG) signal analysis is a popular method for controlling prosthetic and gesture control equipment. For portable systems, such as prosthetic limbs, real-time low-power operation on embedded processors is critical, but to date there has been no record of how existing EMG analysis approaches support such deployments. This paper presents a novel approach to time-domain classification of multichannel EMG signals harnessed from randomly-placed sensors according to the wrist-hand movements which caused their occurrence. It shows how, by employing a very small set of time-domain features, Kernel Fisher discriminant feature projection and Radial Bias Function neural network classifiers, nine wrist-hand movements can be detected with accuracy exceeding 99% - surpassing the state-of-the-art on record. It also shows how, when deployed on ARM Cortex-A53, the processing time is not only sufficient to enable real-time processing but is also a factor 50 shorter than the leading time-frequency techniques on record.
Original languageEnglish
Title of host publication2019 International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Publisher IEEE
ISBN (Electronic)978-1-4799-8131-1
ISBN (Print)978-1-4799-8132-8
Publication statusPublished - 17 Apr 2019


Dive into the research topics of 'EMG wrist-hand motion recognition system for real-time Embedded platform'. Together they form a unique fingerprint.

Cite this