TY - JOUR
T1 - Endothelium-derived Netrin-4 supports pancreatic epithelial cell adhesion and differentiation through integrins α2β1 and α3β1
AU - Yebra, Mayra
AU - Diaferia, Giuseppe R.
AU - Montgomery, Anthony M.P.
AU - Kaido, Thomas
AU - Brunken, William J.
AU - Koch, Manuel
AU - Hardiman, Gary
AU - Crisa, Laura
AU - Cirulli, Vincenzo
PY - 2011/8/3
Y1 - 2011/8/3
N2 - Background: Netrins have been extensively studied in the developing central nervous system as pathfinding guidance cues, and more recently in non-neural tissues where they mediate cell adhesion, migration and differentiation. Netrin-4, a distant relative of Netrins 1-3, has been proposed to affect cell fate determination in developing epithelia, though receptors mediating these functions have yet to be identified. Methodology/Principal Findings: Using human embryonic pancreatic cells as a model of developing epithelium, here we report that Netrin-4 is abundantly expressed in vascular endothelial cells and pancreatic ductal cells, and supports epithelial cell adhesion through integrins α2β1and α3β1. Interestingly, we find that Netrin-4 recognition by embryonic pancreatic cells through integrins α2β1 and α3β1 promotes insulin and glucagon gene expression. In addition, full genome microarray analysis revealed that fetal pancreatic cell adhesion to Netrin-4 causes a prominent down-regulation of cyclins and up-regulation of negative regulators of the cell cycle. Consistent with these results, a number of other genes whose activities have been linked to developmental decisions and/or cellular differentiation are up-regulated. Conclusions/Significance: Given the recognized function of blood vessels in epithelial tissue morphogenesis, our results provide a mechanism by which endothelial-derived Netrin-4 may function as a pro-differentiation cue for adjacent developing pancreatic cell populations expressing adhesion receptors α2β1 and α3β1 integrins.
AB - Background: Netrins have been extensively studied in the developing central nervous system as pathfinding guidance cues, and more recently in non-neural tissues where they mediate cell adhesion, migration and differentiation. Netrin-4, a distant relative of Netrins 1-3, has been proposed to affect cell fate determination in developing epithelia, though receptors mediating these functions have yet to be identified. Methodology/Principal Findings: Using human embryonic pancreatic cells as a model of developing epithelium, here we report that Netrin-4 is abundantly expressed in vascular endothelial cells and pancreatic ductal cells, and supports epithelial cell adhesion through integrins α2β1and α3β1. Interestingly, we find that Netrin-4 recognition by embryonic pancreatic cells through integrins α2β1 and α3β1 promotes insulin and glucagon gene expression. In addition, full genome microarray analysis revealed that fetal pancreatic cell adhesion to Netrin-4 causes a prominent down-regulation of cyclins and up-regulation of negative regulators of the cell cycle. Consistent with these results, a number of other genes whose activities have been linked to developmental decisions and/or cellular differentiation are up-regulated. Conclusions/Significance: Given the recognized function of blood vessels in epithelial tissue morphogenesis, our results provide a mechanism by which endothelial-derived Netrin-4 may function as a pro-differentiation cue for adjacent developing pancreatic cell populations expressing adhesion receptors α2β1 and α3β1 integrins.
UR - http://www.scopus.com/inward/record.url?scp=79960895897&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0022750
DO - 10.1371/journal.pone.0022750
M3 - Article
C2 - 21829502
AN - SCOPUS:79960895897
SN - 1932-6203
VL - 6
JO - PLoS ONE
JF - PLoS ONE
IS - 7
M1 - e22750
ER -