Enhanced nanoparticle delivery exploiting tumour responsive formulations.

Lindsey A. Bennie, Helen McCarthy, Jonathan Coulter

Research output: Contribution to journalReview articlepeer-review

27 Citations (Scopus)
322 Downloads (Pure)


Nanoparticles can be used as drug carriers, contrast agents and radiosensitisers for the treatment of cancer. Nanoparticles can either passively accumulate within tumour sites, or be conjugated with targeting ligands to actively enable tumour deposition. With respect to passive accumulation, particles < 150 nm accumulate with higher efficiency within the tumour microenvironment, a consequence of the enhanced permeability and retention effect. Despite these favourable properties, clinical translation of nano-therapeutics is inhibited due to poor in vivo stability, biodistribution and target cell internalisation. Nano-therapeutics can be modified to exploit features of the tumour microenvironment such as elevated hypoxia, increased pH and a compromised extracellular matrix. This is in contrast to cytotoxic chemotherapies which generally do not exploit the characteristic pathological features of the tumour microenvironment, and as such are prone to debilitating systemic toxicities. This review examines strategies for tumour microenvironment targeting to improve nanoparticle delivery, with particular focus on the delivery of nucleic acids and gold nanoparticles. Evidence for key research areas and future technologies are presented and critically evaluated. Among the most promising technologies are the development of next-generation cell penetrating peptides and the incorporation of micro-environment responsive stealth molecules.
Original languageEnglish
JournalCancer Nanotechnology
Issue number10
Publication statusPublished - 21 Nov 2018


Dive into the research topics of 'Enhanced nanoparticle delivery exploiting tumour responsive formulations.'. Together they form a unique fingerprint.

Cite this