Enhanced Normalized Conjugate Beamforming for Cell-Free Massive MIMO

Giovanni Interdonato, Hien Quoc Ngo, Erik G. Larsson

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
92 Downloads (Pure)


In cell-free massive multiple-input multiple-output (MIMO) the fluctuations of the channel gain from the access points to a user are large due to the distributed topology of the system. Because of these fluctuations, data decoding schemes that treat the channel as deterministic perform inefficiently. A way to reduce the channel fluctuations is to design a precoding scheme that equalizes the effective channel gain seen by the users. Conjugate beamforming (CB) poorly contributes to harden the effective channel at the users. In this work, we propose a variant of CB dubbed enhanced normalized CB (ECB), in that the precoding vector consists of the conjugate of the channel estimate normalized by its squared norm. For this scheme, we derive an exact closed-form expression for an achievable downlink spectral efficiency (SE), accounting for channel estimation errors, pilot reuse and user’s lack of channel state information (CSI), assuming independent Rayleigh fading channels. We also devise an optimal max-min fairness power allocation based only on large-scale fading quantities. ECB greatly boosts the channel hardening enabling the users to reliably decode data relying only on statistical CSI. As the provided effective channel is nearly deterministic, acquiring CSI at the users does not yield a significant gain.

Original languageEnglish
JournalIEEE Transactions on Communications
Early online date29 Jan 2021
Publication statusEarly online date - 29 Jan 2021

Bibliographical note

Publisher Copyright:

Copyright 2021 Elsevier B.V., All rights reserved.


  • Cell-free massive MIMO
  • channel hardening
  • conjugate beamforming
  • downlink training
  • max-min fairness power control
  • spectral efficiency

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Enhanced Normalized Conjugate Beamforming for Cell-Free Massive MIMO'. Together they form a unique fingerprint.

Cite this