Abstract
Optical measuring technologies coupled with machine learning algorithms can be used to build a home-made sensor system. We built such a sensor system using a smartphone and a diffraction grating sheet. Diffraction images were captured under white light illumination and converted into a data matrix for data analysis. In this paper we present a systematic evaluation of this sensor system on the task of differentiating organic apples from conventional ones. We used the sensor system to measure 150 organic and conventional apples as rainbow images. We processed the rainbow images using computer vision techniques, built machine learning and chemometrics models, and used the resultant models to classify testing samples. Moreover, a comparative study was conducted where the same set of apples were scanned by a commercial spectrometer resulting in spectral data of the apple samples and classification was undertaken using partial least squares discriminant analysis (PLS-DA). Experimental results show that state of the art machine learning algorithms such as support vector machine (SVM) and locally weighted partial least squares classifier (LW-PLSC) are effective in handling low-quality image data with classification accuracies of 93 − 100%. These results suggest that the sensor system is convenient and low-cost, and provides a fast, effective, non-destructive and viable solution for in-line food authentication.
Original language | English |
---|---|
Article number | 103437 |
Journal | Journal of Food Composition and Analysis |
Volume | 88 |
Early online date | 30 Jan 2020 |
DOIs | |
Publication status | Published - May 2020 |
Externally published | Yes |
Bibliographical note
This work was supported by Fujian science and technology de-partment project (No. JK2017007), Natural Science Foundation ofFujian Province, China (No. 2018J01776), Natural Science Foundationof Fujian Province, China (No. 2018J01775) and the National NaturalScience Foundation of China under Grant (No. 61672157)Keywords
- Chemometrics
- Diffraction grating
- Food authentication
- Machine learning
- Organic apple