Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-co-glycolide) and Poly(L-lactide-co-glycolide)

Research output: Contribution to journalArticlepeer-review

Abstract

Bioresorbable polymers composed of poly(D,L-lactide-co-glycolide) (PDLLGA) and poly(L-lactide-co-glycolide) (PLLGA) have become increasingly popular for the preparation of bone substitute constructs. However, there are reports of a delayed inflammatory reaction occurring months or years after implantation. Due to the long polymer degradation times, in vitro tests carried out at physiological temperature, 37°C, tend to assess only the short-term biocompatibility of these materials. The aim of this work is to develop an in vitro protocol that can be used to assess the long-term cytotoxicity of bioresorbable polymers in a time efficient manner. This study used a previously developed and validated accelerated degradation protocol to obtain samples of PDLLGA and PLLGA at increasing levels of degradation. Samples were then applied to standard ISO 10993-5 direct contact cytotoxicity testing and it was found that PDLLGA samples showed increasing levels of cytotoxicity at the later stages of degradation, with PLLGA samples demonstrating significantly less cytotoxic behaviour. Following concern that accumulation of acidic degradation products in a closed multi-well culture environment could overestimate cytotoxicity, we developed and validated a new dynamic flow culture methodology, for testing the cytotoxicity of these degradable materials, by adapting a commercial “organ on a chip” flow culture system, Quasi Vivo®. In addition to cytotoxicity testing, we have carried out profiling of inflammatory cytokines released by cells in response to degraded PDLLGA and PLLGA, and have suggested mechanism by which lactide-based bioresorbable materials could modulate the inflammatory response through the G-protein coupled receptor (GPCR), hydroxycarboxylic acid receptor 1 (HCA1).
Original languageEnglish
JournalActa Biomaterialia
Early online date27 Jul 2021
DOIs
Publication statusEarly online date - 27 Jul 2021

Fingerprint

Dive into the research topics of 'Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-co-glycolide) and Poly(L-lactide-co-glycolide)'. Together they form a unique fingerprint.

Cite this