TY - JOUR
T1 - Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo
AU - Al Rashid, Shahnaz
AU - Dellaire, G.
AU - Cuddihy, A.
AU - Jalali, F.
AU - Vaid, M.
AU - Coackley, C.
AU - Folkard, M.
AU - Xu, Y.
AU - Chen, B.P.C.
AU - Chen, D.J.
AU - Lilge, L.
AU - Prise, Kevin
AU - Jones, D.P.B.
AU - Bristow, R.G.
PY - 2005/12/1
Y1 - 2005/12/1
N2 - Despite a clear link between ataxia-telangiectasia mutated (ATM)-dependent phosphorylation of p53 and cell cycle checkpoint control, the intracellular biology and subcellular localization of p53 phosphoforms during the initial sensing of DNA damage is poorly understood. Using GO-G, confluent primary human diploid fibroblast cultures, we show that endogenous p53, phosphorylated at Ser(15) (p53(Ser15)), accumulates as discrete, dose-dependent and chromatin-bound foci within 30 minutes following induction of DNA breaks or DNA base damage. This biologicafly distinct subpool of p53(Ser15) is ATM dependent and resistant to 26S-proteasomal degradation. p53(Ser15) colocalizes and coimmunoprecipitates with gamma-H2AX with kinetics similar to that of biochemical DNA double-strand break (DNA-dsb) rejoining. Subnuclear micro-beam irradiation studies confirm p53 S,,15 is recruited to sites of DNA damage containing gamma-H2AX, ATM(Ser1981), and DNA-PKcs(Thr2609) in vivo. Furthermore, studies using isogenic human and murine cells, which express Ser(15) or Ser(18) phosphomutant proteins, respectively, show defective nuclear foci formation, decreased induction of p21(WAF) decreased gamma-H2AX association, and altered DNA-dsb kinetics following DNA damage. Our results suggest a unique biology for this p53 phosphoform in the initial steps of DNA damage signaling and implicates ATM-p53 chromatin-based interactions as mediators of cell cycle checkpoint control and DNA repair to prevent carcinogenesis. (Cancer Res 2005; 65(23): 10810-21).
AB - Despite a clear link between ataxia-telangiectasia mutated (ATM)-dependent phosphorylation of p53 and cell cycle checkpoint control, the intracellular biology and subcellular localization of p53 phosphoforms during the initial sensing of DNA damage is poorly understood. Using GO-G, confluent primary human diploid fibroblast cultures, we show that endogenous p53, phosphorylated at Ser(15) (p53(Ser15)), accumulates as discrete, dose-dependent and chromatin-bound foci within 30 minutes following induction of DNA breaks or DNA base damage. This biologicafly distinct subpool of p53(Ser15) is ATM dependent and resistant to 26S-proteasomal degradation. p53(Ser15) colocalizes and coimmunoprecipitates with gamma-H2AX with kinetics similar to that of biochemical DNA double-strand break (DNA-dsb) rejoining. Subnuclear micro-beam irradiation studies confirm p53 S,,15 is recruited to sites of DNA damage containing gamma-H2AX, ATM(Ser1981), and DNA-PKcs(Thr2609) in vivo. Furthermore, studies using isogenic human and murine cells, which express Ser(15) or Ser(18) phosphomutant proteins, respectively, show defective nuclear foci formation, decreased induction of p21(WAF) decreased gamma-H2AX association, and altered DNA-dsb kinetics following DNA damage. Our results suggest a unique biology for this p53 phosphoform in the initial steps of DNA damage signaling and implicates ATM-p53 chromatin-based interactions as mediators of cell cycle checkpoint control and DNA repair to prevent carcinogenesis. (Cancer Res 2005; 65(23): 10810-21).
U2 - 10.1158/008-5472.CAN-05-0729
DO - 10.1158/008-5472.CAN-05-0729
M3 - Article
VL - 65
SP - 10810
EP - 10821
JO - Cancer Research
JF - Cancer Research
SN - 0008-5472
IS - 23
ER -