TY - JOUR
T1 - Evidence That Interspecies Polymorphism in the Human and Rat Cholecystokinin Receptor-2 Affects Structure of the Binding Site for the Endogenous Agonist Cholecystokinin
AU - Langer, Ingrid
AU - Tikhonova, Irina G.
AU - Travers, Marie-Agnes
AU - Archer-Lahlou, Elodie
AU - Escrieut, Chantal
AU - Maigret, Bernard
AU - Fourmy, Daniel
N1 - MEDLINE® is the source for the MeSH terms of this document.
PY - 2005/6/10
Y1 - 2005/6/10
N2 - The cholecystokinin (CCK) receptor-2 exerts very important central and peripheral functions by binding the neuropeptides cholecystokinin or gastrin. Because this receptor is a potential therapeutic target, great interest has been devoted to the identification of efficient antagonists. However, interspecies genetic polymorphism that does not alter cholecystokinin-induced signaling was shown to markedly affect activity of synthetic ligands. In this context, precise structural study of the agonist binding site on the human cholecystokinin receptor-2 is a prerequisite to elucidating the molecular basis for its activation and to optimizing properties of synthetic ligands. In this study, using site-directed mutagenesis and molecular modeling, we delineated the binding site for CCK on the human cholecystokinin receptor-2 by mutating amino acids corresponding to that of the rat homolog. By doing so, we demonstrated that, although resembling that of rat homolog, the human cholecystokinin receptor-2 binding site also displays important distinct structural features that were demonstrated by susceptibility to several point mutations (F120A, Y189A, H207A). Furthermore, docking of CCK in the human and rat cholecystokinin receptor-2, followed by dynamic simulations, allowed us to propose a plausible structural explanation of the experimentally observed difference between rat and human cholecystokinin-2 receptors.
AB - The cholecystokinin (CCK) receptor-2 exerts very important central and peripheral functions by binding the neuropeptides cholecystokinin or gastrin. Because this receptor is a potential therapeutic target, great interest has been devoted to the identification of efficient antagonists. However, interspecies genetic polymorphism that does not alter cholecystokinin-induced signaling was shown to markedly affect activity of synthetic ligands. In this context, precise structural study of the agonist binding site on the human cholecystokinin receptor-2 is a prerequisite to elucidating the molecular basis for its activation and to optimizing properties of synthetic ligands. In this study, using site-directed mutagenesis and molecular modeling, we delineated the binding site for CCK on the human cholecystokinin receptor-2 by mutating amino acids corresponding to that of the rat homolog. By doing so, we demonstrated that, although resembling that of rat homolog, the human cholecystokinin receptor-2 binding site also displays important distinct structural features that were demonstrated by susceptibility to several point mutations (F120A, Y189A, H207A). Furthermore, docking of CCK in the human and rat cholecystokinin receptor-2, followed by dynamic simulations, allowed us to propose a plausible structural explanation of the experimentally observed difference between rat and human cholecystokinin-2 receptors.
U2 - 10.1074/jbc.M501786200
DO - 10.1074/jbc.M501786200
M3 - Article
C2 - 15817487
SN - 0021-9258
VL - 280
SP - 22198
EP - 22204
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 23
ER -