Extending the functionality of the slurry ferrihydrite-DGT method: Performance evaluation for the measurement of vanadate, arsenate, antimonate and molybdate in water

Shu Zhang , Paul N. Williams, Chun-Yang Zhou, Lena Q. Ma, Jun Luo

Research output: Contribution to journalArticle

13 Citations (Scopus)
168 Downloads (Pure)

Abstract

The monitoring of oxyanions in waters, presents significant challenges due to their relatively low concentrations, and a characteristically changeable/unstable/reactive geochemistry with high spatial and temporal turnover. This results in a very heterogeneous pattern of mobility and bioavailability, which is difficult to capture reliably and in a cost effective manner. The diffusive gradients in thin-films (DGT) technique is a popular analytical tool for testing water quality, primarily because it provides a time-integrated measurement. However, to date, the most widely used DGT configuration for oxyanion sampling, the slurry ferrihydrite binding layer (SF-DGT) has only been fully characterized for phosphate. Confirmatory testing of the functional range of ionic strengths, pH, deployment times and ionic competition effects, that the SF-DGT's operates within has not been carried out, but is addressed in this study for VV, AsV, SbV, and MoVI. In this study SF-DGT SbV measurements functioned over the largest range of conditions (ionic strength, 0.1–500 mM; pH 3.86–9.90), while ionic strengths above 100 and 500 mM were found to be problematic for AsV and MoVI, respectively. Low pH (below 4) caused inferences with VV, conversely AsV and MoVI determination faltered/deviated from predicted responses in pH conditions of ∼9. SF-DGT measurements adequately predicted up to weeklong averaged in situ metal oxyanion concentrations in a freshwater river. This study concludes that the SF-DGT configuration is highly suitable for pollution monitoring applications in freshwater systems for key oxyanion species.
Original languageEnglish
Pages (from-to)812-819
JournalChemosphere
Volume184
Early online date18 Jun 2017
DOIs
Publication statusPublished - Oct 2017

Fingerprint Dive into the research topics of 'Extending the functionality of the slurry ferrihydrite-DGT method: Performance evaluation for the measurement of vanadate, arsenate, antimonate and molybdate in water'. Together they form a unique fingerprint.

  • Cite this