TY - JOUR
T1 - Extracting the Interfacial Free Energy and Anisotropy from a Smooth Fluctuating Dividing Surface
AU - Baldi, Edoardo
AU - Ceriotti, Michele
AU - Tribello, Gareth Aneurin
PY - 2017/8/31
Y1 - 2017/8/31
N2 - Interfaces between different materials and phases play a crucial role in many physical and chemical phenomena. When performing simulations of matter at the atomic scale, however, it is often not trivial to characterize these interfaces, particularly when they are rough or diffuse. Here we discuss a generalized construction, due to Willard and Chandler, that allows one to obtain a smooth dividing surface that follows the irregular, ever changing shape of these fluctuating interfaces. We show how this construction can be used to study the surface that separates a solid material from its melt and how analyses of the Fourier modes for the capillary fluctuations of this instantaneous dividing surface can be performed. This particular analysis is useful as one can compute the specific free energy excess of the interface, and its dependence on orientation relative to the bulk phases, from the average amplitude of the Fourier modes. We, therefore, discuss the efficiency of this approach, both regarding system size and statistical sampling.
AB - Interfaces between different materials and phases play a crucial role in many physical and chemical phenomena. When performing simulations of matter at the atomic scale, however, it is often not trivial to characterize these interfaces, particularly when they are rough or diffuse. Here we discuss a generalized construction, due to Willard and Chandler, that allows one to obtain a smooth dividing surface that follows the irregular, ever changing shape of these fluctuating interfaces. We show how this construction can be used to study the surface that separates a solid material from its melt and how analyses of the Fourier modes for the capillary fluctuations of this instantaneous dividing surface can be performed. This particular analysis is useful as one can compute the specific free energy excess of the interface, and its dependence on orientation relative to the bulk phases, from the average amplitude of the Fourier modes. We, therefore, discuss the efficiency of this approach, both regarding system size and statistical sampling.
U2 - 10.1088/1361-648X/aa893d
DO - 10.1088/1361-648X/aa893d
M3 - Article
SN - 0953-8984
JO - Journal of Physics: Condensed Matter
JF - Journal of Physics: Condensed Matter
ER -