Abstract
Background: Evidence on the practical application of artificial intelligence (AI)-based diabetic retinopathy (DR) screening is needed.
Methods: Consented participants were screened for DR using retinal imaging with AI interpretation from March 2021 to June 2021 at four diabetes clinics in Rwanda. Additionally, images were graded by a UK National Health System-certified retinal image grader. DR grades based on the International Classification of Diabetic Retinopathy with a grade of 2.0 or higher were considered referable. The AI system was designed to detect optic nerve and macular anomalies outside of DR. A vertical cup to disc ratio of 0.7 and higher and/or macular anomalies recognised at a cut-off of 60% and higher were also considered referable by AI.
Results: Among 827 participants (59.6% women (n=493)) screened by AI, 33.2% (n=275) were referred for follow-up. Satisfaction with AI screening was high (99.5%, n=823), and 63.7% of participants (n=527) preferred AI over human grading. Compared with human grading, the sensitivity of the AI for referable DR was 92% (95% CI 0.863%, 0.968%), with a specificity of 85% (95% CI 0.751%, 0.882%). Of the participants referred by AI: 88 (32.0%) were for DR only, 109 (39.6%) for DR and an anomaly, 65 (23.6%) for an anomaly only and 13 (4.73%) for other reasons. Adherence to referrals was highest for those referred for DR at 53.4%.
Conclusion: DR screening using AI led to accurate referrals from diabetes clinics in Rwanda and high rates of participant satisfaction, suggesting AI screening for DR is practical and acceptable.
Methods: Consented participants were screened for DR using retinal imaging with AI interpretation from March 2021 to June 2021 at four diabetes clinics in Rwanda. Additionally, images were graded by a UK National Health System-certified retinal image grader. DR grades based on the International Classification of Diabetic Retinopathy with a grade of 2.0 or higher were considered referable. The AI system was designed to detect optic nerve and macular anomalies outside of DR. A vertical cup to disc ratio of 0.7 and higher and/or macular anomalies recognised at a cut-off of 60% and higher were also considered referable by AI.
Results: Among 827 participants (59.6% women (n=493)) screened by AI, 33.2% (n=275) were referred for follow-up. Satisfaction with AI screening was high (99.5%, n=823), and 63.7% of participants (n=527) preferred AI over human grading. Compared with human grading, the sensitivity of the AI for referable DR was 92% (95% CI 0.863%, 0.968%), with a specificity of 85% (95% CI 0.751%, 0.882%). Of the participants referred by AI: 88 (32.0%) were for DR only, 109 (39.6%) for DR and an anomaly, 65 (23.6%) for an anomaly only and 13 (4.73%) for other reasons. Adherence to referrals was highest for those referred for DR at 53.4%.
Conclusion: DR screening using AI led to accurate referrals from diabetes clinics in Rwanda and high rates of participant satisfaction, suggesting AI screening for DR is practical and acceptable.
Original language | English |
---|---|
Journal | British Journal of Ophthalmology |
Early online date | 04 Aug 2023 |
DOIs | |
Publication status | Early online date - 04 Aug 2023 |
Keywords
- Public health
- Retina
- Macula
- Imaging