FEM updating for damage modeling of composite cylinders under radial compression considering the winding pattern

Tales V. Lisbôa*, José Humberto S. Almeida Jr*, Axel Spickenheuer, Markus Stommel, Sandro C. Amico, Rogério J. Marczak

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

55 Downloads (Pure)

Abstract

This work aims at developing a strategy to obtain damage evolution parameters of wound cylinders to verify the influence of the winding pattern on them. First, a detailed description of the pattern generation is presented. Then, a finite element (FE) model is developed, in which the cylinders are constructed with winding patterns (WP) of 1/1, 2/1, and 3/1 and subjected to radial compressive loading. Since the cylinder-to-plate contact is considered, the variation of radial stiffness with respect to the parallel plate position is also analyzed. In addition, a damage model is used to predict the progressive failure of those cylinders. A finite element model updating (FEMU) routine is then developed to find the damage input parameters that best simulate experimental force–displacement curves. Key results show that the FEMU algorithm is strongly dependent on the initial guesses producing, however, an excellent correlation with experimental data. The predicted force versus displacement curves for all winding patterns are within the experimental standard deviation, except for the cases in which the winding pattern is not taken into consideration. The computational framework proposed is validated both quantitatively and qualitatively through post-mortem analysis of the specimens. The winding pattern affects the failure and damage mechanisms of the cylinders and, consequently conventional FE models that disregard the pattern cannot capture these mechanisms.

Original languageEnglish
Article number108954
JournalThin-Walled Structures
Volume173
Early online date18 Feb 2022
DOIs
Publication statusPublished - Apr 2022

Bibliographical note

Funding Information:
The authors are grateful to CNPq (Universal projects 424426/2016-1 and 310649/2017-0 ), FAPERGS (PqG project 17/2551-0001 ), CAPES/DAAD (PROBRAL project 88881.198774/2018-01 and 57447163 ), and FAPESP/FAPERGS (project 19/2551-0002279-4 ) for their financial support. J.H.S. Almeida Jr. is supported by the Royal Academy of Engineering under the Research Fellowship scheme [Grant No. RF/201920/19/150 ].

Publisher Copyright:
© 2022 The Author(s)

Keywords

  • Damage modeling
  • Filament winding
  • Finite element model updating
  • Radial compression
  • Winding pattern

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'FEM updating for damage modeling of composite cylinders under radial compression considering the winding pattern'. Together they form a unique fingerprint.

Cite this