Abstract
BACKGROUND: ALM201 is a therapeutic peptide derived from FKBPL that has previously undergone preclinical and clinical development for oncology indications and has completed a Phase 1a clinical trial in ovarian cancer patients and other advanced solid tumours.
METHODS: In vitro, cancer stem cell (CSC) assays in a range of HGSOC cell lines and patient samples, and in vivo tumour initiation, growth delay and limiting dilution assays, were utilised. Mechanisms were determined by using immunohistochemistry, ELISA, qRT-PCR, RNAseq and western blotting. Endogenous FKBPL protein levels were evaluated using tissue microarrays (TMA).
RESULTS: ALM201 reduced CSCs in cell lines and primary samples by inducing differentiation. ALM201 treatment of highly vascularised Kuramochi xenografts resulted in tumour growth delay by disruption of angiogenesis and a ten-fold decrease in the CSC population. In contrast, ALM201 failed to elicit a strong antitumour response in non-vascularised OVCAR3 xenografts, due to high levels of IL-6 and vasculogenic mimicry. High endogenous tumour expression of FKBPL was associated with an increased progression-free interval, supporting the protective role of FKBPL in HGSOC.
CONCLUSION: FKBPL-based therapy can (i) dually target angiogenesis and CSCs, (ii) target the CD44/STAT3 pathway in tumours and (iii) is effective in highly vascularised HGSOC tumours with low levels of IL-6.
Original language | English |
---|---|
Pages (from-to) | 361 |
Journal | British Journal of Cancer |
Volume | 2020 |
Issue number | 126 |
Early online date | 27 Nov 2019 |
DOIs | |
Publication status | Published - 04 Feb 2020 |
Fingerprint
Dive into the research topics of 'FKBPL-based peptide, ALM201, targets angiogenesis and cancer stem cells in ovarian cancer'. Together they form a unique fingerprint.Profiles
-
Fiona Furlong
- School of Pharmacy - Senior Lecturer
- Material and Advanced Technologies for Healthcare
Person: Academic