Abstract
Purpose of review
Although there is growing interest surrounding the potential health benefits of cocoa and chocolate, the relative contribution of bioactive constituents for these effects remains unclear. This review summarizes the recent research on the cardiometabolic effects of cocoa and chocolate with a focus on two key constituents: flavan-3-ols and theobromine.
Recent findings
Recent meta-analyses suggest beneficial cardiometabolic effects of chocolate following short-term intake, including improvements in flow-mediated dilatation, blood pressure, lipoprotein levels and biomarkers of insulin resistance. Flavan-3-ols may play a role, but it is currently unclear which specific compounds or metabolites are key. Theobromine has also been shown to improve lipoprotein levels in trials, although these findings need verification at habitual intake levels. Longer term dose–response randomized controlled trials are required to determine the sustainability of the short-term effects and the optimal dose. Quantifying levels of bioactives in intervention products and their metabolites in biological samples will facilitate the assessment of their relative impact and the underlying mechanisms of action.
Summary
Promising data support the beneficial cardiometabolic effects of cocoa and chocolate intake, with significant interest in the flavan-3-ol and theobromine content. Validated biomarkers of intake together with more relevant mechanistic insights from experimental models using physiologically relevant concentrations and metabolites will continue to inform this research field.
Although there is growing interest surrounding the potential health benefits of cocoa and chocolate, the relative contribution of bioactive constituents for these effects remains unclear. This review summarizes the recent research on the cardiometabolic effects of cocoa and chocolate with a focus on two key constituents: flavan-3-ols and theobromine.
Recent findings
Recent meta-analyses suggest beneficial cardiometabolic effects of chocolate following short-term intake, including improvements in flow-mediated dilatation, blood pressure, lipoprotein levels and biomarkers of insulin resistance. Flavan-3-ols may play a role, but it is currently unclear which specific compounds or metabolites are key. Theobromine has also been shown to improve lipoprotein levels in trials, although these findings need verification at habitual intake levels. Longer term dose–response randomized controlled trials are required to determine the sustainability of the short-term effects and the optimal dose. Quantifying levels of bioactives in intervention products and their metabolites in biological samples will facilitate the assessment of their relative impact and the underlying mechanisms of action.
Summary
Promising data support the beneficial cardiometabolic effects of cocoa and chocolate intake, with significant interest in the flavan-3-ol and theobromine content. Validated biomarkers of intake together with more relevant mechanistic insights from experimental models using physiologically relevant concentrations and metabolites will continue to inform this research field.
Original language | English |
---|---|
Pages (from-to) | 10-19 |
Number of pages | 10 |
Journal | Current Opinion in Lipidology |
Volume | 26 |
Issue number | 1 |
DOIs | |
Publication status | Published - 01 Feb 2015 |