Force-induced activation of covalent bonds in mechanoresponsive polymeric materials

Douglas A. Davis, Andrew Hamilton, Jinglei Yang, Lee D. Cremar, Dara Van Gough, Stephanie L. Potisek, Mitchell T. Ong, Paul V. Braun, Todd J. Martínez, Scott R. White, Jeffrey S. Moore, Nancy R. Sottos

Research output: Contribution to journalLetterpeer-review

1402 Citations (Scopus)


Mechanochemical transduction enables an extraordinary range of physiological processes such as the sense of touch, hearing, balance, muscle contraction, and the growth and remodelling of tissue and
bone1–6. Although biology is replete with materials systems that actively and functionally respond to mechanical stimuli, the default mechanochemical reaction of bulk polymers to large external stress is the unselective scission of covalent bonds, resulting in damage or failure7. An alternative to this degradation process is the rational molecular design of synthetic materials such that mechanical stress
favourably altersmaterial properties. A few mechanosensitive polymers with this property have been developed8–14; but their active response is mediated through non-covalent processes, which may
limit the extent to which properties can be modified and the longterm stability in structural materials. Previously, we have shown with dissolved polymer strands incorporating mechanically sensitive chemical groups—so-called mechanophores—that the directional nature of mechanical forces can selectively break and re-form covalent bonds15,16. We now demonstrate that such forceinduced covalent-bond activation can also be realized with mechanophore-linked elastomeric and glassy polymers, by using a mechanophore that changes colour as it undergoes a reversible electrocyclic ring-opening reaction under tensile stress and thus allows us to directly and locally visualize the mechanochemical reaction. We find that pronounced changes in colour and fluorescence emerge with the accumulation of plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the ring-opening reaction is an activated process. We anticipate that force activation of covalent bonds can serve as a general strategy for the development of new mechanophore building blocks that impart polymeric materials with desirable functionalities ranging from damage sensing to fully regenerative self-healing.
Original languageEnglish
Pages (from-to)68-72
Number of pages5
Issue numbernull
Publication statusPublished - 07 May 2009


  • mechanochemistry
  • polymers
  • sensing

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Force-induced activation of covalent bonds in mechanoresponsive polymeric materials'. Together they form a unique fingerprint.

Cite this