TY - GEN
T1 - Forces on a submerged sub sea tidal kite in surface proximity
AU - Schmitt, Pál
AU - González, Daniel Ferreira
AU - Göttsche, Ulf
AU - Schulz, Christian W.
AU - Netzband, Stefan
AU - Scharf, Martin
AU - Abdel-Maksoud, Moustafa
AU - Kregting, Louise
PY - 2018
Y1 - 2018
N2 - Sub-sea tidal kites, while still at an early stage of development, might be an efficient and cost effective way of extracting energy from marine currents [9]. During normal operating conditions the kite is positioned deep in the water column and would ideally be built neutrally buoyant. For operation and maintenance (O&M) situations, or if a fault occurs, it is important to surface the kite in a controlled manner. While the behaviour of wing like profiles in currents is well understood, the assessment of the behaviour in surface proximity and under wave action is not trivial [1]. We employ an efficient boundary element code called panMARE [2] to simulate the effect of surface proximity and wave current interaction on a sub-sea kite. Comparison with experimental data from [1] demonstrates the suitability of the method to simulate forces on a submerged foil for varying immersion depths and angles of attack. Simulations are then performed to investigate the combined effect of waves and current to inform on the most suitable met-ocean conditions for kite retrieval.
AB - Sub-sea tidal kites, while still at an early stage of development, might be an efficient and cost effective way of extracting energy from marine currents [9]. During normal operating conditions the kite is positioned deep in the water column and would ideally be built neutrally buoyant. For operation and maintenance (O&M) situations, or if a fault occurs, it is important to surface the kite in a controlled manner. While the behaviour of wing like profiles in currents is well understood, the assessment of the behaviour in surface proximity and under wave action is not trivial [1]. We employ an efficient boundary element code called panMARE [2] to simulate the effect of surface proximity and wave current interaction on a sub-sea kite. Comparison with experimental data from [1] demonstrates the suitability of the method to simulate forces on a submerged foil for varying immersion depths and angles of attack. Simulations are then performed to investigate the combined effect of waves and current to inform on the most suitable met-ocean conditions for kite retrieval.
KW - Boundary Element Method (BEM)
KW - Hydrofoil
KW - Marine renewable
KW - PanMARE
KW - Tidal energy
KW - Wave current interaction
UR - http://www.scopus.com/inward/record.url?scp=85081049859&partnerID=8YFLogxK
M3 - Conference contribution
T3 - Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018
SP - 3213
EP - 3223
BT - Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018
A2 - Owen, Roger
A2 - de Borst, Rene
A2 - Reese, Jason
A2 - Pearce, Chris
PB - International Centre for Numerical Methods in Engineering, CIMNE
T2 - 6th ECCOMAS European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th ECCOMAS European Conference on Computational Fluid Dynamics, ECFD 2018
Y2 - 11 June 2018 through 15 June 2018
ER -