Full counting statistics approach to the quantum non-equilibrium Landauer bound

Giacomo Guarnieri, Steve Campbell, John Goold, Simon Pigeon, Bassano Vacchini, Mauro Paternostro

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
178 Downloads (Pure)


We develop the full counting statistics of dissipated heat to explore the relation with Landauer's principle. Combining the two-time measurement protocol for the reconstruction of the statistics of heat with the minimal set of assumptions for Landauer's principle to hold, we derive a general one-parameter family of upper and lower bounds on the mean dissipated heat from a system to its environment. Furthermore, we establish a connection with the degree of non-unitality of the system's dynamics and show that, if a large deviation function exists as stationary limit of the above cumulant generating function, then our family of lower and upper bounds can be used to witness and understand first-order dynamical phase transitions. For the purpose of demonstration, we apply these bounds to an externally pumped three level system coupled to a finite sized thermal environment.

Original languageEnglish
Article number103038
Number of pages12
JournalNew Journal of Physics
Publication statusPublished - 01 Nov 2017


  • dynamical phase transitions
  • Landauers bound
  • large deviation theory
  • open quantum systems
  • quantum thermodynamics

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Full counting statistics approach to the quantum non-equilibrium Landauer bound'. Together they form a unique fingerprint.

Cite this