TY - GEN
T1 - GAN-based Pose-aware Regulation for Video-based Person Re-identification
AU - Borgia, Alessandro
AU - Hua, Yang
AU - Kodirov, Elyor
AU - Robertson, Neil M.
PY - 2019/3/7
Y1 - 2019/3/7
N2 - Video-based person re-identification deals with the inherent difficulty of matching unregulated sequences with different length and with incomplete target pose/viewpoint structure. Common approaches operate either by reducing the problem to the still images case, facing a significant information loss, or by exploiting inter-sequence temporal dependencies as in Siamese Recurrent Neural Networks or in gait analysis. However, in all cases, the intersequences pose/viewpoint misalignment is not considered, and the existing spatial approaches are mostly limited to the still images context. To this end, we propose a novel approach that can exploit more effectively the rich video information, by accounting for the role that the changing pose/viewpoint factor plays in the sequences matching process. Specifically, our approach consists of two components. The first one attempts to complement the original pose-incomplete information carried by the sequences with synthetic GAN-generated images, and fuse their feature vectors into a more discriminative viewpointinsensitive embedding, namely Weighted Fusion (WF). Another one performs an explicit pose-based alignment of sequence pairs to promote coherent feature matching, namely Weighted-Pose Regulation (WPR). Extensive experiments on two large video-based benchmark datasets show that our approach outperforms considerably existing methods.
AB - Video-based person re-identification deals with the inherent difficulty of matching unregulated sequences with different length and with incomplete target pose/viewpoint structure. Common approaches operate either by reducing the problem to the still images case, facing a significant information loss, or by exploiting inter-sequence temporal dependencies as in Siamese Recurrent Neural Networks or in gait analysis. However, in all cases, the intersequences pose/viewpoint misalignment is not considered, and the existing spatial approaches are mostly limited to the still images context. To this end, we propose a novel approach that can exploit more effectively the rich video information, by accounting for the role that the changing pose/viewpoint factor plays in the sequences matching process. Specifically, our approach consists of two components. The first one attempts to complement the original pose-incomplete information carried by the sequences with synthetic GAN-generated images, and fuse their feature vectors into a more discriminative viewpointinsensitive embedding, namely Weighted Fusion (WF). Another one performs an explicit pose-based alignment of sequence pairs to promote coherent feature matching, namely Weighted-Pose Regulation (WPR). Extensive experiments on two large video-based benchmark datasets show that our approach outperforms considerably existing methods.
U2 - 10.1109/WACV.2019.00130
DO - 10.1109/WACV.2019.00130
M3 - Conference contribution
SN - 978-1-7281-1976-2
T3 - IEEE Winter Conference on Applications of Computer Vision (WACV): Proceedings
BT - WACV 2019: The IEEE Winter Conference on Applications of Computer Vision: Proceedings
ER -