General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis

Yingrui Zhang, Ziwei Ye, Chunchun Li, Qinglu Chen, Wafaa Aljuhani, Yiming Huang, Xin Xu, Chunfei Wu, Steven E.J. Bell, Yikai Xu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)
92 Downloads (Pure)

Abstract

Pickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle constituents. This approach is inconvenient and potentially a dead-end for many applications since the adsorbed modifiers prevent interactions between the functional nanosurface and its surroundings. Here, we demonstrate a general modifier-free approach to construct Pickering emulsions by using a combination of stabilizer particles, which stabilize the emulsion droplet, and a second population of unmodified functional particles that sit alongside the stabilizers at the interface. Freeing Pickering emulsions from chemical modifiers unlocks their potential across a range of applications including plasmonic sensing and interfacial catalysis that have previously been challenging to achieve. More broadly, this strategy provides an approach to the development of surface-accessible nanomaterials with enhanced and/or additional properties from a wide range of nano-building blocks including organic nanocrystals, carbonaceous materials, metals and oxides.

Original languageEnglish
Article number1392
JournalNature Communications
Volume14
DOIs
Publication statusPublished - 13 Mar 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'General approach to surface-accessible plasmonic Pickering emulsions for SERS sensing and interfacial catalysis'. Together they form a unique fingerprint.

Cite this