Generation of cluster states in optomechanical quantum systems

Ousama Houhou, Habib Aissaoui, Alessandro Ferraro

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)
286 Downloads (Pure)


We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2N-tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.
Original languageEnglish
Article number063843
Number of pages10
JournalPhysical Review A (Atomic, Molecular, and Optical Physics)
Issue number6
Publication statusPublished - 28 Dec 2015


Dive into the research topics of 'Generation of cluster states in optomechanical quantum systems'. Together they form a unique fingerprint.

Cite this