Generic Ergodic Capacity Bounds for Fixed-Gain AF Dual-Hop Relaying Systems

Caijun Zhong, Michail Matthaiou, George K. Karagiannidis, Tharmalingam Ratnarajah

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


This paper elaborates on the ergodic capacity of fixed-gain amplify-and-forward (AF) dual-hop systems, which have recently attracted considerable research and industry interest. In particular, two novel capacity bounds that allow for fast and efficient computation and apply for nonidentically distributed hops are derived. More importantly, they are generic since they apply to a wide range of popular fading channel models. Specifically, the proposed upper bound applies to Nakagami-m, Weibull, and generalized-K fading channels, whereas the proposed lower bound is more general and applies to Rician fading channels. Moreover, it is explicitly demonstrated that the proposed lower and upper bounds become asymptotically exact in the high signal-to-noise ratio (SNR) regime. Based on our analytical expressions and numerical results, we gain valuable insights into the impact of model parameters on the capacity of fixed-gain AF dual-hop relaying systems.
Original languageEnglish
Pages (from-to)3814-3824
Number of pages11
JournalIEEE Transactions on Vehicular Technology
Issue number8
Publication statusPublished - Oct 2011


Dive into the research topics of 'Generic Ergodic Capacity Bounds for Fixed-Gain AF Dual-Hop Relaying Systems'. Together they form a unique fingerprint.

Cite this