TY - JOUR
T1 - Genomic insights into the Agromyces-like symbiont of earthworms and its distribution among host species
AU - B. Lund, Marie
AU - Mogensen, Mathias F.
AU - Marshall, Ian P.G.
AU - Albertsen, Mads
AU - Viana, Flavia
AU - Schramm, Andreas
PY - 2018/6
Y1 - 2018/6
N2 - The nephridia (excretory organs) of lumbricid earthworms generally harbor symbiotic bacteria. In the compost worms Eisenia fetida and E. andrei, these comprise Verminephrobacter, Ca. Nephrothrix and an Agromyces-like symbiont. While diversity, transmission, and function of the first two symbionts has been unraveled in recent years, little is known about the biology of the uncultured Agromyces-like symbiont or about its distribution within lumbricid earthworms.In this study, we sequenced a cocoon metagenome of E. andrei and assembled a 96.3% complete genome of the Agromyces-like symbiont, which indicates a heterotrophic and potentially microaerophilic lifestyle. A 16S rRNA gene based survey showed that the Agromyces-like symbiont has a narrow host range (present in 10 out of 51 investigated lumbricid earthworm species) and is likely species-specific or at least specific for groups of closely related host species. The Agromyces-like symbionts form a monophyletic group and feature a reduced genome with AT-bias and very low genome-wide similarity to closely related Agromyces spp. (average amino acid identity of 64%); therefore, we suggest establishing a novel genus for the Agromyces-like symbionts of earthworms, for which we propose the name Candidatus Lumbricidophila, with the specific symbiont of Eisenia andrei as novel species Ca. L. eiseniae.
AB - The nephridia (excretory organs) of lumbricid earthworms generally harbor symbiotic bacteria. In the compost worms Eisenia fetida and E. andrei, these comprise Verminephrobacter, Ca. Nephrothrix and an Agromyces-like symbiont. While diversity, transmission, and function of the first two symbionts has been unraveled in recent years, little is known about the biology of the uncultured Agromyces-like symbiont or about its distribution within lumbricid earthworms.In this study, we sequenced a cocoon metagenome of E. andrei and assembled a 96.3% complete genome of the Agromyces-like symbiont, which indicates a heterotrophic and potentially microaerophilic lifestyle. A 16S rRNA gene based survey showed that the Agromyces-like symbiont has a narrow host range (present in 10 out of 51 investigated lumbricid earthworm species) and is likely species-specific or at least specific for groups of closely related host species. The Agromyces-like symbionts form a monophyletic group and feature a reduced genome with AT-bias and very low genome-wide similarity to closely related Agromyces spp. (average amino acid identity of 64%); therefore, we suggest establishing a novel genus for the Agromyces-like symbionts of earthworms, for which we propose the name Candidatus Lumbricidophila, with the specific symbiont of Eisenia andrei as novel species Ca. L. eiseniae.
U2 - 10.1093/femsec/fiy068
DO - 10.1093/femsec/fiy068
M3 - Article
SN - 0168-6496
VL - 94
JO - FEMS Microbiology Ecology
JF - FEMS Microbiology Ecology
IS - 6
M1 - fiy068
ER -