Genomic instability in human lymphocytes irradiated with individual charged particles: Involvement of tumor necrosis factor a in irradiated cells but not bystander cells

S.R. Moore, S. Marsden, D. Macdonald, S. Mitchell, M. Folkard, B. Michael, D.T. Goodhead, Kevin Prise, M.A. Kadhim

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.
Original languageEnglish
Pages (from-to)183-190
Number of pages8
JournalRadiation Research
Volume163
Issue number2
Publication statusPublished - Feb 2005

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Biophysics
  • Radiology Nuclear Medicine and imaging
  • Radiation

Fingerprint Dive into the research topics of 'Genomic instability in human lymphocytes irradiated with individual charged particles: Involvement of tumor necrosis factor a in irradiated cells but not bystander cells'. Together they form a unique fingerprint.

  • Cite this

    Moore, S. R., Marsden, S., Macdonald, D., Mitchell, S., Folkard, M., Michael, B., Goodhead, D. T., Prise, K., & Kadhim, M. A. (2005). Genomic instability in human lymphocytes irradiated with individual charged particles: Involvement of tumor necrosis factor a in irradiated cells but not bystander cells. Radiation Research, 163(2), 183-190.