TY - JOUR
T1 - GIP receptor
T2 - Expression in neuroendocrine tumours, internalization, signalling from endosomes and structure-function relationship studies
AU - Reubi, Jean Claude
AU - Fourmy, Daniel
AU - Cordomi, Arnau
AU - Tikhonova, Irina G
AU - Gigoux, Véronique
N1 - Copyright © 2019. Published by Elsevier Inc.
PY - 2019/12/16
Y1 - 2019/12/16
N2 - GIP is well known as a peptide regulating metabolic functions. In this review paper, we summarize a series of data on GIP receptor (GIPR). First, expression study of GIPR in human neuroendocrine tumours showed a very high incidence (nearly 100%) and a high density in both functional and non functional pancreatic tumours, ileal tumours, bronchial tumours and medullary thyroid carcinomas. Then, data on internalization of GIPR following stimulation by GIP are reported. Rapid and abundant internalization of GIPR also found in tumor pancreatic endocrine cells opens the possibility of tumor imaging and eradication using radiolabeled GIP. Interestingly, internalized GIPR continues to signal in early endosomes stimulating production of cAMP and activation of PKA, thus, supporting the view that GIPR signals from both plasma membrane and vesicles of internalization. At last, we summarize data from studies using in synergy molecular modeling and site-directed mutagenesis, which identified crucial amino acids of transmembrane domains of GIPR involved in GIPR binding site of GIP and/or in its activation and coupling to Gs protein. All together, these last molecular data may help to better understand structure-activity relationship data on GIP and GIPR.
AB - GIP is well known as a peptide regulating metabolic functions. In this review paper, we summarize a series of data on GIP receptor (GIPR). First, expression study of GIPR in human neuroendocrine tumours showed a very high incidence (nearly 100%) and a high density in both functional and non functional pancreatic tumours, ileal tumours, bronchial tumours and medullary thyroid carcinomas. Then, data on internalization of GIPR following stimulation by GIP are reported. Rapid and abundant internalization of GIPR also found in tumor pancreatic endocrine cells opens the possibility of tumor imaging and eradication using radiolabeled GIP. Interestingly, internalized GIPR continues to signal in early endosomes stimulating production of cAMP and activation of PKA, thus, supporting the view that GIPR signals from both plasma membrane and vesicles of internalization. At last, we summarize data from studies using in synergy molecular modeling and site-directed mutagenesis, which identified crucial amino acids of transmembrane domains of GIPR involved in GIPR binding site of GIP and/or in its activation and coupling to Gs protein. All together, these last molecular data may help to better understand structure-activity relationship data on GIP and GIPR.
U2 - 10.1016/j.peptides.2019.170229
DO - 10.1016/j.peptides.2019.170229
M3 - Review article
C2 - 31857104
SN - 0196-9781
SP - 170229
JO - Peptides
JF - Peptides
ER -