Graphene-based spatial light modulator using optical checkerboard AMC metasurface

Zhanshan Sun*, Fumin Huang, Yunqi Fu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Spatial light modulators (SLMs) based on graphene have been intensively studied in recent decades. Artificial magnetic conductors (AMCs), which are usually applied to radar cross section (RCS) reduction in microwave regions, can have arbitrary reflected phase while that of perfect electric conductor (PEC) is 180°in general. Herein, we first demonstrate a graphene-based SLM assisted by checkerboard-like AMC metasurface that operates switchable destructive and constructive interferences. Two AMC structures were designed to have the same reflected amplitude but a phase difference of 180°, leading to the cancelation of light at the superposition areas in spatial domain. The main beam of manipulated light was split to several different directions so that the received signal was modulated to minimum value, which could be referred to ‘off’ state. Through gating the Fermi level of monolayer graphene below the AMC metasurface, the phase difference could be adjusted to 0°while the amplitude difference remained nearly unchanged. Therefore, the constructive interference was formed and contributed to the maximum reflection, achieving the ‘on’ state. Numerical simulations indicated that modulation depth higher than 10 dB was achieved when the Fermi level of graphene was gated to 0.1 eV. The depth kept rising with the increase of Fermi level and got a maximum value of 32 dB at 1 eV. The proposed checkerboard design provides a novel method to manipulate spatial light for modulators, imaging and optical clocking.

Original languageEnglish
Article number126115
Number of pages6
JournalOptics Communications
Volume474
Early online date27 May 2020
DOIs
Publication statusPublished - 01 Nov 2020

Bibliographical note

Funding Information:
This research was funded by National Natural Science Foundation of China (NSFC) (61901492), (61901493) and the China Scholarship Council (CSC).

Publisher Copyright:
© 2020

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Keywords

  • AMC
  • Graphene
  • Metasurface
  • Spatial light modulator

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Graphene-based spatial light modulator using optical checkerboard AMC metasurface'. Together they form a unique fingerprint.

Cite this