HERQULES: System level cross-layer design exploration for efficient energy-quality trade-offs

G. Karakonstantis, G. Panagopoulos, K. Roy

Research output: Chapter in Book/Report/Conference proceedingChapter

11 Citations (Scopus)

Abstract

In this paper, we present a unique cross-layer design framework that allows systematic exploration of the energy-delay-quality trade-offs at the algorithm, architecture and circuit level of design abstraction for each block of a system. In addition, taking into consideration the interactions between different sub-blocks of a system, it identifies the design solutions that can ensure the least energy at the "right amount of quality" for each sub-block/system under user quality/delay constraints. This is achieved by deriving sensitivity based design criteria, the balancing of which form the quantitative relations that can be used early in the system design process to evaluate the energy efficiency of various design options. The proposed framework when applied to the exploration of energy-quality design space of the main blocks of a digital camera and a wireless receiver, achieves 58% and 33% energy savings under 41% and 20% error increase, respectively.
Original languageEnglish
Title of host publicationProceedings of the International Symposium on Low Power Electronics and Design
Pages117-122
Number of pages6
DOIs
Publication statusPublished - 01 Jan 2010

Fingerprint Dive into the research topics of 'HERQULES: System level cross-layer design exploration for efficient energy-quality trade-offs'. Together they form a unique fingerprint.

Cite this