Abstract
To alleviate practical limitations in the design of mm-wave on-chip image-reject filters, systematic design methodologies are presented. Three low-order filters with high-selectivity and low-loss characteristics are designed and compared. Transmission zeroes are created by means of a quarter-wave transmission line (filter 1) and a series LC resonator (filters 2 and 3). Implemented on SiGe, the filters occupy 0.125, 0.064, and 0.079 mm2 chip area including pads. The measured transmission
losses across 81-86 GHz E-Band frequency range are 3.6-5.2 dB for filter 1, 3.1-4.7 dB for filter 2 and 3.6-5 dB for filter 3 where rejection levels at the image band are greater than 30 dB.
losses across 81-86 GHz E-Band frequency range are 3.6-5.2 dB for filter 1, 3.1-4.7 dB for filter 2 and 3.6-5 dB for filter 3 where rejection levels at the image band are greater than 30 dB.
Original language | English |
---|---|
Pages (from-to) | 353-361 |
Number of pages | 9 |
Journal | IET Circuits, Devices and Systems |
Volume | 9 |
Issue number | 5 |
DOIs | |
Publication status | Published - Sept 2015 |