TY - JOUR
T1 - How is a "kitchen chair" like a "farm horse"? Exploring the representation of noun-noun compound semantics in transformer-based language models
AU - Ormerod, Mark
AU - Martinez-del-Rincon, Jesus
AU - Devereux, Barry
PY - 2024/3/1
Y1 - 2024/3/1
N2 - Despite the success of Transformer-based language models in a wide variety of natural language processing tasks, our understanding of how these models process a given input in order to represent task-relevant information remains incomplete. In this work, we focus on semantic composition and examine how Transformer-based language models represent semantic information related to the meaning of English noun-noun compounds. We probe Transformer-based language models for their knowledge of the thematic relations that link the head nouns and modifier words of compounds (e.g., KITCHEN CHAIR: a chair located in a kitchen). Firstly, using a dataset featuring groups of compounds with shared lexical or semantic features, we find that token representations of six Transformer-based language models distinguish between pairs of compounds based on whether they use the same thematic relation. Secondly, we utilize fine-grained vector representations of compound semantics derived from human annotations, and find that token vectors from several models elicit a strong signal of the semantic relations used in the compounds. In a novel ‘compositional probe’ setting, where we compare the semantic relation signal in mean-pooled token vectors of compounds to mean-pooled token vectors when the two constituent words appear in separate sentences, we find that the Transformer-based language models that best represent the semantics of noun-noun compounds also do so substantially better than in the control condition where the two constituent works are processed separately. Overall, our results shed light on the ability of Transformer-based language models to support compositional semantic processes in representing the meaning of noun-noun compounds.
AB - Despite the success of Transformer-based language models in a wide variety of natural language processing tasks, our understanding of how these models process a given input in order to represent task-relevant information remains incomplete. In this work, we focus on semantic composition and examine how Transformer-based language models represent semantic information related to the meaning of English noun-noun compounds. We probe Transformer-based language models for their knowledge of the thematic relations that link the head nouns and modifier words of compounds (e.g., KITCHEN CHAIR: a chair located in a kitchen). Firstly, using a dataset featuring groups of compounds with shared lexical or semantic features, we find that token representations of six Transformer-based language models distinguish between pairs of compounds based on whether they use the same thematic relation. Secondly, we utilize fine-grained vector representations of compound semantics derived from human annotations, and find that token vectors from several models elicit a strong signal of the semantic relations used in the compounds. In a novel ‘compositional probe’ setting, where we compare the semantic relation signal in mean-pooled token vectors of compounds to mean-pooled token vectors when the two constituent words appear in separate sentences, we find that the Transformer-based language models that best represent the semantics of noun-noun compounds also do so substantially better than in the control condition where the two constituent works are processed separately. Overall, our results shed light on the ability of Transformer-based language models to support compositional semantic processes in representing the meaning of noun-noun compounds.
U2 - 10.1162/coli_a_00495
DO - 10.1162/coli_a_00495
M3 - Article
SN - 0891-2017
VL - 50
SP - 49
EP - 81
JO - Computational Linguistics
JF - Computational Linguistics
IS - 1
ER -