Hybrid Processing Design for Multipair Massive MIMO Relaying with Channel Spatial Correlation

Milad Fozooni, Hien Quoc Ngo, Michail Matthaiou, Shi Jin, George Alexandropoulos

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)
171 Downloads (Pure)

Abstract

Massive multiple-input multiple-output (MIMO) avails of simple transceiver design which can tackle many drawbacks of relay systems in terms of complicated signal processing, latency, and noise amplification. However, the cost and circuit complexity of having one radio frequency (RF) chain dedicated to each antenna element are prohibitive in practice. In this paper, we address this critical issue in amplify-andforward (AF) relay systems using a hybrid analog and digital (A/D) transceiver structure. More specifically, leveraging the channel long-term properties, we design the analog beamformer which aims to minimize the channel estimation error and remain invariant over a long timescale. Then, the beamforming is completed by simple digital signal processing, i.e., maximum ratio combining/maximum ratio transmission (MRC/MRT) or zero-forcing (ZF) in the baseband domain. We present analytical bounds on the achievable spectral efficiency taking into account the spatial correlation and imperfect channel state information at the relay station. Our analytical results reveal that the hybrid A/D structure with ZF digital processor exploits spatial correlation and offers a higher spectral efficiency compared to the hybrid A/D structure with MRC/MRT scheme. Our numerical results showcase that the hybrid A/D beamforming design captures nearly 95% of the spectral efficiency of a fully digital AF relaying topology even by removing half of the RF chains. It is also shown that the hybrid A/D structure is robust to coarse quantization, and even with 2-bit resolution, the system can achieve more than 93% of the spectral efficiency offered by the same hybrid A/D topology with infinite resolution phase shifters.
Original languageEnglish
Number of pages16
JournalIEEE Transactions on Communications
Early online date28 Aug 2018
Publication statusEarly online date - 28 Aug 2018

Fingerprint Dive into the research topics of 'Hybrid Processing Design for Multipair Massive MIMO Relaying with Channel Spatial Correlation'. Together they form a unique fingerprint.

Cite this