Hydration characteristics and structure formation of cement pastes containing metakaolin

L. Dvorkin, N. Lushnikova, O. Bezusyak, Mohammed Sonebi, J. Khatib

Research output: Contribution to journalArticle

1 Citation (Scopus)
248 Downloads (Pure)

Abstract

Metakaolin (MK) is one of the most effective mineral admixtures for cement-based composites. The deposits of kaolin clays are wide-spread in the world. Metakaolin is comparable to silica fume as an active mineral admixture for cement-based composites. In this paper, the rheological and mechanical properties of cement paste containing metakaolin are investigated. The effect of MK is more evident at “tight” hydration conditions within mixtures with low water-cement ratio, provided by application of superplasticizers. The cement is replaced with 0 to 15% metakaolin, and superplasticizer content ranged from 0 to 1.5% by weight of cementitious materials (i.e. cement and metakaolin). An equation is derived to describe the relationship between the metakaolin and superplasticizer content and consistency of pastes. There is a linear dependence between metakalolin content and water demand. Second-degree polynomial describe the influence of superplasticizer content. The application of SP and MK may produce cement-water suspensions with water-retaining capacity at 50-70% higher than control suspensions. The investigation of initial structure forming of cement pastes with SP-MK composite admixture indicates the extension of coagulation structure forming phase comparing to the pastes without additives. Crystallization stage was characterized by more intensive strengthening of the paste with SP-MK admixture comparing to the paste without admixtures and paste with SP. Results on the porosity parameters for hardened cement paste indicate a decrease in the average diameter of pores and refinement of pore structure in the presence of metakaolin. A finer pore structure associated with an increase in strength. X-ray analysis data reveal a growing number of small-crystalline low-alkaline calcium hydrosilicates and reducing portlandite content, when MK dosage increases. Scanning electron microscopy (SEM) data confirm, that hardened cement paste containing MK has crystalline structure with dominance of partially crystalized hydrosilicates and gel-like formations.
Original languageEnglish
Article number01013
Pages (from-to)1-8
JournalMATEC Web of Conferences
Volume149
Early online date14 Feb 2018
DOIs
Publication statusEarly online date - 14 Feb 2018

Fingerprint Dive into the research topics of 'Hydration characteristics and structure formation of cement pastes containing metakaolin'. Together they form a unique fingerprint.

  • Cite this