Abstract
The steam pyrolysis-gasification of biomass, wood sawdust, was carried out with a Ni/MCM-41 catalyst for hydrogen production in a two-stage fixed bed reaction system. The wood sawdust was pyrolysed in the first reactor and the derived products were gasified in the second reactor. The synthesised MCM-41 mesoporous catalyst supports were impregnated with different Ni loadings (5, 10, 20 and 40. wt.%), which were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR), transmission electron microscopy (TEM) and temperature-programmed oxidation (TPO). NiO particles were homogeneously dispersed inside the pores of 5, 10, and 20. wt.% Ni/MCM-41 catalysts; however, more bulkly NiO particles (up to 200. nm particle size) were detected outside the pores with an increase of the Ni loading up to 40. wt.%. Gas production was increased from 40.7 to 62.8. wt.%, hydrogen production was increased from 30.1 to 50.6. vol.% of total gas composition when the Ni loading was increased from 5 to 40. wt.% during the pyrolysis-gasification of wood sawdust. This work showed low coke deposition (from 0.5 to 4.0. wt.%) with valuable bio-oil by-products using the Ni/MCM-41 catalyst. The highly efficient conversion of renewable biomass resource to hydrogen and bio-oil with very low coke deposition indicates that biomass gasification on Ni/MCM-41 catalysts via two-stage reaction is a promising method for the development of the biorefinery concept.
Original language | English |
---|---|
Pages (from-to) | 6-13 |
Number of pages | 8 |
Journal | Applied Catalysis B: Environment and Energy |
Volume | 108-109 |
DOIs | |
Publication status | Published - 11 Oct 2011 |
Externally published | Yes |
Keywords
- Biomass
- Gasification
- Ni/MCM-41
- Pyrolysis
- Two-stage fixed bed reactor
ASJC Scopus subject areas
- Catalysis
- General Environmental Science
- Process Chemistry and Technology