Identification of bridge Key Performance Indicators using survival analysis for future network wide structural health monitoring.

Research output: Contribution to journalArticlepeer-review

Abstract

Machine learning and statistical approaches have transformed the management of infrastructure systems such as water, energy and modern transport networks. AI-based solutions allow asset owners to predict the future performance and optimize maintenance routines through the use of historic performance and real time sensor data. The industrial adoption of such methods has been limited in the management of bridges within aging transport networks. Predictive maintenance at bridge network level is particularly complex due to the considerable level of heterogeneity encompassed across various bridge types and functions. The paper reviews some of main approaches in bridge predictive maintenance modeling and outlines the challenges in their adaptation to the future network wide management of bridges. Survival analysis techniques have been successfully applied to predict outcomes from a homogenous data set, such as bridge deck condition. This paper considers the complexities of European road networks in terms of bridge type, function and age to present a novel application of survival analysis based on sparse data obtained from visual inspections. This research is focused on analyzing existing inspection information to establish data foundations, which will pave the way for big data utilization, and inform on key performance indicators for future network wide structural health monitoring.
Original languageEnglish
JournalSensors (Basel, Switzerland)
Publication statusAccepted - 28 Nov 2020

Fingerprint Dive into the research topics of 'Identification of bridge Key Performance Indicators using survival analysis for future network wide structural health monitoring.'. Together they form a unique fingerprint.

Cite this